Школьная энциклопедия. Доплеровское смещение Эффект доплера формула частоты

Школьная энциклопедия. Доплеровское смещение Эффект доплера формула частоты

Эффект Доплера заключается в том, что частота колебаний, распространившихся на некоторое расстояние от их источника, отличается от частоты колебаний последнего; указанное изменение частоты зависит от относительной скорости движения источника и приёмника колебаний и не зависит от удалённости от источника. Эффект Доплера проявляется при распространении волн от вибрирующего поплавка на воде, звука, электромагнитных излучений и в некоторых других ситуациях. Это очень полезный эффект, широко и успешно используемый в системах радиосвязи, спутниковой навигации, спектрального анализа, медицинской диагностики и других. Его суть и математическая модель считаются достаточно простыми и ясными для понимания, чтобы преподавать их даже в школах. Так зачем же о нём писать ещё что-то? Дело в том, что эффект Доплера занимает особое положение в естествознании, поскольку связан с принципом относительности - фундаментальным в механике, хотя до сих пор вызывающим споры даже внутри лагеря нерялитивистов, не говоря уж о межлагерном противостоянии. Мне представляется, что посредством тщательного анализа данного эффекта можно лучше понять собственно принцип относительности, не выходя за рамки классической механики. Другими словами, эффект Доплера - экспериментальный факт, имеющий важное значение для обоснования классического принципа относительности.

Хотя эффект Доплера был обнаружен экспериментально ещё в середине XIX века, он мог быть сначала открыт исключительно, как говорят, "на кончике пера" и лишь затем проверен опытом. Его математическая модель очень проста: все основные формулы получаются из рассмотрения треугольников с использованием классических правил перехода между системами отсчёта. Так что, эффект Доплера оказывается прямым следствием принципа относительности. Простейшие формулы для частных случаев относительного движения были выведены самим Кристианом Доплером, а затем авторитетные физики (среди которых и Хендрик Лоренц) их несколько обобщили, и в таком виде они попали в учебники, курсы лекций различного уровня, а также в популярную литературу по физике. Однако, как это ни странно, указанные формулы оказались ошибочными.

Как может быть, что неверные формулы (назовём их каноническими) правильно описывают реальность в том смысле, что успешно предсказывают результаты соответствующих измерений? Простой ответ: да, формулы, вообще говоря, не точны, но их точности хватает в тех условиях, в которых они применяются - довольно обычное дело в науке. Этим объяснением можно было бы и удовлетвориться, если бы не следующее обстоятельство, повлекшее за собой грандиозные недоразумения в физике.

Дело в том, что канонические формулы отрицают так называемый поперечный эффект Доплера, а в специальной теории относительности (СТО) Альберта Эйнштейна ему есть место. Поскольку эффект действительно существует (он применяется, например, в ультразвуковой диагностике кровеносных сосудов), то Эйнштейн и релятивисты посчитали его экспериментальной поддержкой своей теории относительности. Между тем, эффект Доплера вполне описывается и в классической теории, если к выводу канонических формул отнестись более тщательно, не допуская, так сказать, методических ошибок и поспешных пренебрежений малыми величинами. Исторически же случилось, что из-за математических приближений в классической физике эффект не был замечен, а потому и отрицался, а в релятивистской теории он не затерялся и был причислен к её важнейшим заслугам, а также к очень весомым эмпирическим аргументам в её пользу. Иначе говоря, классическая физика потеряла поперечный эффект Доплера из-за элементарной математической небрежности, а релятивистская физика гордится его предсказанием и приводит в качестве аргумента своей неспекулятивности. Добавим к этому ещё и то досадное упущение, что эффект ударной волны, появляющийся при скорости источника колебаний большей скорости распространения волны, формально не следует из классической модели эффекта Доплера, а описан отдельно стараниями Эрнста Маха; однако это всего лишь дефект традиционной классической модели, который можно легко исправить.

Наиболее тщательный и глубокий анализ классической математической модели эффекта Доплера, очистивший в итоге её от основных ошибок, выполнил Олег Акимов (http://sceptic-ratio.narod.ru/fi/es4.htm). По крайней мере мне не известны более ранние работы такого класса. Его результаты настолько меня убедили, что я было отказался от своей старой затеи самому разобраться с данной темой. Практически на все свои накопившиеся к тому времени вопросы я получил исчерпывающие, как мне тогда казалось, ответы. Однако чуть позднее я всё же заметил несколько вещей, разъяснение которых, как традиционное, так и принимаемое Акимовым, остаётся, с моей точки зрения, не вполне удовлетворительным. Поэтому я всё же решился предложить свой вариант изложения модели эффекта Доплера.

В полном варианте моей статьи (http://dunaevv1.narod.ru/other/dopler_effect.pdf) вы найдёте вывод основных формул, описывающих эффект Доплера в рамках классических (нерелятивистских) представлений об относительности движения. При этом вы увидите, что там, где есть эффект Доплера по частоте, может отсутствовать одноимённый эффект по длине волны, что не согласуется с нашими традиционными представлениями, полученными ещё в школе. Анимационные иллюстрации эффекта Доплера можно найти по адресу: http://dunaevv1.narod.ru/other/dopler.htm . Здесь же я приведу отправные положения о наблюдаемом объекте и наблюдателе.

Эффект Доплера проявляется при наблюдении объекта, состоящего из двух частей: источника и последовательности исходящих из него и движущихся некоторых элементов. В качестве последних могут быть, например, пули (источник - пулемёт) или фронты волны (источник - генератор электромагнитных колебаний или колебаний среды, например, воды, воздуха и др.). В математической модели эффекта Доплера от физической природы источника и элементов обычно отвлекаются и берут за основу одну из следующих чисто кинематических схем:
1) множество точек, возникающих из некоторого источника и разлетающихся в одном или во всех возможных направлениях; условно назовём точки пулями, а саму схему - пулевой;
2) множество окружностей, возникающих в одной плоскости около источника как центра, с увеличивающимися во времени радиусами; в трёхмерном пространстве вместо окружностей можно рассматривать сферы; условно назовём окружности или сферы фронтами распространяющейся волны, или просто волнами, а схему - волновой.

Для объяснения эффекта Доплера годится любая из указанных схем, хотя для прояснения некоторых деталей одна из них может оказаться более удобной, чем другая. Поэтому я не буду пренебрегать удобствами, если на то представится случай.

Теперь о параметрах модели. Источник генерирует элементы (пули или волны) с постоянной частотой f или, другими словами, с постоянным временным интервалом (периодом) T=1/f. Появившиеся из источника элементы движутся в пространстве равномерно и прямолинейно со скоростью c. В пулевой схеме очевидно, что такое равномерное и прямолинейное движение пуль. В волновой схеме имеется в виду равномерное увеличение радиуса каждого фронта волны, кругового в плоском случае и сферического в трёхмерном. Относительно чего со скоростью c движутся элементы? Возможны два варианта, о которых чуть позже. Элементы образуют в пространстве удлиняющуюся со временем последовательность с одинаковыми расстояниями между любыми двумя соседними элементами. Это расстояние и в пулевой, и волновой схемах будем для краткости называть одинаково - длиной волны и обозначать буквой лямбда;. Наконец, источник элементов также движется равномерно и прямолинейно со скоростью v. Относительно чего? Относительно некоторой системы отсчёта, которая считается неподвижной.
Итак, мы указали исходные данные, а в чём заключается задача? В определении частоты и длины волны элементов на некотором расстоянии от их источника в зависимости от скоростей движения.

Введение неподвижной системы отсчёта (НСО) при изучении движения чего либо - совершенно обычное дело и, как правило, если о ней говорят, то совсем немного. Однако при изучении эффекта Доплера ей следует уделить больше внимания ввиду того, что кроме движения многокомпонентного объекта (источника с элементами) обычно рассматривают ещё и движение наблюдателя - приёмника волн или пуль. Однако здесь мы сталкиваемся с некоторой методической трудностью, которую часто просто не желают замечать.
Наблюдатель какого-либо движения представляется посредством некоторой системы отсчёта, в которой фиксируется его положение и, если необходимо, угол зрения. Если мы хотим описать движение каких-то внешних объектов, то не должны искажать картину собственным движением. Поэтому мы и вводим НСО. НСО соответствует, так сказать, метанаблюдателю, в поле зрения которого находятся все объекты теории - источник и исходящие из него элементы, в любой момент времени и в любой точке пространства. Автор, создающий и излагающий научную теорию, всегда является метанаблюдателем. Термин "метанаблюдатель" используют ещё и для того, чтобы не возникало путаницы при введении другого наблюдателя - приёмника элементов, иногда называемого объектным наблюдателем, который может перемещаться. Дело в том, что эффект Доплера проявляется по-разному в трёх ситуациях: 1) при движении источника и покоящемся наблюдателе, 2) при движении наблюдателя и покоящемся источнике и 3) при движении их обоих. В настоящей статье мне не нужен объектный наблюдатель, введение которого вызывает, как мне кажется, лишь путаницу. У меня наблюдатель только один, он связан с некоторой, вообще говоря, произвольной НСО. Эффект движения неподвижного наблюдателя относительно объекта моделируется специальным определением движения объекта относительно НСО.

Рассмотрим сначала простейшую модель эффекта Доплера, соответствующую так называемой пулевой схеме, которая сейчас выбрана лишь из соображений удобства: одномерный случай, в котором векторное сложение скоростей выражается через скалярное сложение их величин, то есть без применения тригонометрии. Напомню, что название схемы метафорическое и никак не связано с реальной стрельбой из пулемёта.

Пусть задана неподвижная одномерная система координат; источник движется относительно данной системы отсчёта с постоянной скоростью v параллельно оси координат в сторону увеличения их значений, и генерирует с постоянной частотой f пули, летящие также равномерно и прямолинейно и в том же направлении, что и их источник, но со скоростью c, относительность которой может быть в двух вариантах: 1) относительно источника и 2) относительно неподвижной системы отсчёта. Равномерное и прямолинейное движение называют ещё инерциальным.

В первом варианте пули летят со скоростью c относительно источника, а сам источник движется со скоростью v относительно НСО. Во втором варианте пули и источник движутся относительно НСО со скоростями c и v соответственно.
Очевидно, оба варианта сходятся к одному в частном случае, когда источник неподвижен (v = 0) и пули летят с одинаковой скоростью c и относительно источника, и относительно НСО. На этом тривиальном варианте остановимся ненадолго. В точке расположения источника частота f “стрельбы” известна по определению. А какова частота прибытия пуль на некотором удалении от источника? Возьмём произвольную точку на пути полёта пуль. Пусть в какой-то момент в эту точку прибыла пуля, тогда следующая в очереди прилетит в эту точку спустя период времени T = 1/f, и, следовательно, частота прибытия пуль равна f, то есть такая же, что и в точке положения источника. Расстояние между любыми соседними в очереди пулями (длина волны) ; = cT = c/f. Обратите внимание на то, что при изменении величины c скорости полёта пуль пропорционально изменяется длина волны;, а частота f остаётся неизменной. В рассматриваемом случае, когда источник неподвижен, эффекта Доплера нет.

Теперь перейдём к двум вариантам, в которых источник движется (v > 0) относительно неподвижной системы отсчёта. Различие вариантов состоит лишь в определении, относительно чего задана скорость c полёта пуль. Напомню, пули летят в ту же сторону, что и источник; для противоположного движения следует просто заменить знак перед c на противоположный. Нас интересует частота f" прибытия пуль в точку, лежащую на пути их полёта на произвольном расстоянии от источника; частота f" определяется относительно НСО. Далее штрихованные величины будут соответствовать НСО.

Если вас заинтересовала данная статья, то её продолжение можно найти в полном варианте по адресу http://dunaevv1.narod.ru/other/dopler_effect.pdf

– важнейшее явление в физике волн. Прежде чем перейти напрямую к сути вопроса, немного вводной теории.

Колебание – в той или иной степени повторяющийся процесс изменения состояния системы около положения равновесия. Волна - это колебание, которое способно удаляться от места своего возникновения, распространяясь в среде. Волны характеризуются амплитудой , длиной и частотой . Звук, который мы слышим - это волна, т.е. механические колебания частиц воздуха, распространяющиеся от источника звука.

Вооружившись сведениями о волнах, перейдем к эффекту Доплера. А если хотите узнать больше о колебаниях, волнах и резонансе - добро пожаловать в нашего блога.

Суть эффекта Доплера

Самый популярный и простой пример, объясняющий суть эффекта Доплера – неподвижный наблюдатель и машина с сиреной. Допустим, вы стоите на остановке. К вам по улице движется карета скорой помощи со включенной сиреной. Частота звука, которую вы будете слышать по мере приближения машины, не одинакова.

Сначала звук будет более высокой частоты, когда машина поравняется с остановкой. Вы услышите истинную частоту звука сирены, а по мере удаления частота звука будет понижаться. Это и есть эффект Доплера .


Частота и длина волны излучения, воспринимаемого наблюдателем, изменяется вследствие движения источника излучения.

Если у Кэпа спросят, кто открыл эффект Доплера, он не задумываясь ответит, что это сделал Доплер. И будет прав. Данное явление, теоретически обоснованное в 1842 году австрийским физиком Кристианом Доплером , было впоследствии названо его именем. Сам Доплер вывел свою теорию, наблюдая за кругами на воде и предположив, что наблюдения можно обобщить для всех волн. Экспериментально подтвердить эффект Доплера для звука и света удалось позднее.

Выше мы рассмотрели пример Эффект Доплера для звуковых волн. Однако эффект Доплера справедлив не только для звука. Различают:

  • Акустический эффект Доплера;
  • Оптический эффект Доплера;
  • Эффект Доплера для электромагнитных волн;
  • Релятивистский эффект Доплера.

Именно эксперименты со звуковыми волнами помогли дать первое экспериментальное подтверждение этому эффекту.

Экспериментальное подтверждение эффекта Доплера

Подтверждением правильности рассуждений Кристиана Доплера связано с одним из интересных и необычных физических экспериментов. В 1845 году метеоролог из Голландии Христиан Баллот взял мощный локомотив и оркестр, состоящий из музыкантов с абсолютным слухом. Часть музыкантов – это были трубачи – ехали на открытой площадке поезда и постоянно тянули одну и ту же ноту. Допустим, это была ля второй октавы.

Другие музыканты находились на станции и слушали, что играют их коллеги. Абсолютный слух всех участников эксперимента сводил вероятность ошибки к минимуму. Эксперимент длился два дня, все устали, было сожжено много угля, но результаты того стоили. Оказалось, что высота звука действительно зависит от относительной скорости источника или наблюдателя (слушателя).


Применение эффекта Доплера

Одно из наиболее широко известных применений – определение скорости движения объектов при помощи датчиков скорости. Радиосигналы, посылаемые радаром, отражаются от машин и возвращаются обратно. При этом, смещение частоты, с которой сигналы возвращаются, имеет непосредственную связь со скоростью машины. Сопоставляя скорость и изменение частоты, можно вычислять скорость.

Эффект Доплера широко применяется в медицине. На нем основано действие приборов ультразвуковой диагностики. Существует отдельная методика в УЗИ, называемая доплерографией .

Эффект Доплера также используют в оптике , акустике , радиоэлектронике , астрономии , радиолокации .

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Открытие эффекта Доплера сыграло важную роль в ходе становления современной физики. Одно из подтверждений теории Большого взрыва основывается на этом эффекте. Как связаны эффект Доплера и Большой взрыв? Согласно теории Большого взрыва, Вселенная расширяется.

При наблюдении удаленных галактик наблюдается красное смещение – сдвиг спектральных линий в красную сторону спектра. Объясняя красное смещение при помощи эффекта Доплера, можно сделать вывод, согласующийся с теорией: галактики удаляются друг от друга, Вселенная расширяется.


Формула для эффекта Доплера

Когда теорию эффекта Доплера подвергали критике, одним из аргументов оппонентов ученого был факт, что теория помещалась всего на восьми листах, а вывод формулы эффекта Доплера не содержал громоздких математических выкладок. На наш взгляд, это только плюс!

Пусть u – скорость приемника относительно среды, v – скорость источника волн относительно среды, с - скорость распространения волн в среде, w0 - частота волн источника. Тогда формула эффекта Доплера в самом общем случае будет выглядеть так:

Здесь w – частота, которую будет фиксировать приемник.

Релятивистский эффект Доплера

В отличие от классического эффекта Доплера при распространении электромагнитных волн в вакууме для расчета эффекта Доплера следует применять СТО и учитывать релятивистское замедление времени. Пусть света – с , v – скорость источника относительно приемника, тета – угол между направлением на источник и вектором скорости, связанным с системой отсчета приемника. Тогда формула для релятивистского эффекта Доплера будет иметь вид:

Сегодня мы рассказали о важнейшем эффекте нашего мира – эффекте Доплера. Хотите научиться решать задачи на эффект Доплера быстро и легко? Спросите у специалистов студенческого сервиса , и они охотно поделятся своим опытом! А в конце - еще немного про теорию Большого взрыва и эффект Доплера.

Эффект Доплера - изменение частоты и, соответственно, длины волны излучения, воспринимаемое наблюдателем, из-за движения источника излучения или движения наблюдателя.

Рисунок 1. Изменение длины волны, вызванное движением источника

Для волн, распространяющихся в среде, таких как звуковые волны, эффект зависит от скорости наблюдателя и источника относительно среды, в которой эти волны распространяются. Таким образом, суммарный эффект Доплера может быть результатом движения источника, движения наблюдателя или движения среды. Каждый из этих эффектов анализируется отдельно.

В классической физике, где скорости источника и приемника относительно среды ниже, чем скорость волн в среде, связь между наблюдаемой частотой и источником частоты определяется по формуле:

${\rm c-\ }$ это скорость волн в среде;

${{\rm v}}_{{\rm r}}{\rm -}{\rm \ }$это относительная скорость приемника;

${{\rm v}}_{{\rm s}}{\rm -}$ относительная скорость источника.

Приведенная выше формула предполагает, что источник либо непосредственно приближается или удаляется от наблюдателя.

Если скорость, $v_s\ $а также $v_r\ $малы по сравнению со скоростью волны, отношения между наблюдаемой частотой и источником частоты можно записать:

$\Delta v=v_r-v_s-$ это скорость приемника относительно источника: она положительна, когда источник и приемник движутся навстречу друг другу.

Рисунок 2. Эффект Доплера, наблюдаемый в потоке воды вокруг лебедя

Применение эффекта Доплера

    Эффект Доплера для электромагнитных волн, таких как свет, имеет большое значение в астрономии и дает в результате так называемое красное смещение или синие смещение. Он был использован для измерения скорости, при которой звезды и галактики приближаются или удаляются от нас; то есть, их радиальные скорости.

    Положительная радиальная скорость показывает, что звезда удаляется от Солнца, отрицательная, что она приближается.

    Радар

    Эффект Доплера используется в некоторых типах радаров для измерения скорости обнаруженных объектов. В радаре луч выстреливает по движущейся мишени - например, автомобилю, так как полиция использует радар для фиксирования скорости автомобилистов -- по мере приближения или удаления от радара.

    Медицинская визуализация и измерение кровотока

    Эхокардиограмма может, в определенных пределах, производить точную оценку направления кровотока и скорости крови и сердечной ткани в любой произвольной точке с использованием эффекта Доплера. Одним из недостатков является то, что ультразвуковой луч должен быть направлен параллельно потоку крови.

    Измерения скорости кровотока также используются в других областях медицинского ультразвукового исследования, например в акушерском ультразвуковом исследовании, и неврологии. Измерение скорости кровотока в артериях и венах на основе эффекта Доплера является эффективным инструментом для диагностики сосудистых проблем, таких как стеноз.

Пример 1

При излучении спектра излучения некоторой туманности линия излучения водорода ${\lambda }_a=656,3\ нм$ оказалась смещенной на $\Delta \lambda =2,5\ нм$ в область с большей длиной волны (красное смещение). Определить скорость $v$ движения туманности относительно Земли и указать, удаляется она от Земли или приближается к ней.

Эффект Доплера описывается формулой

$v >0$ при приближении к наблюдателю

Длина волны

\[\lambda =\frac{c}{v}\] \[\Delta \lambda =\lambda -{\lambda }_0=\frac{c}{U}-{\frac{c}{U}}_0=\frac{c-v}{U_0}-\frac{c}{U_0}=-\frac{v}{U_0}\ (1)\] \

Подставим (2) в (1) и получим

\[\Delta \lambda =-\frac{v\cdot {\lambda }_{\alpha }}{c}\] \ \

Ответ: туманность удаляется со скоростью $1,14\cdot {10}^6{м}/{с}$.

1

Юшкевич Р.С., Дегтярева Е.Р.

В статье даётся вывод формул к эффекту Доплера без использования закона сложения скоростей, но с использованием принципа постоянства скорости света только относительно источника света. Определена пространственная граница возможности приёма электромагнитных волн. Рассмотрена зависимость скорости света от расстояния. Определен коэффициент для вычисления скорости света.

Для объяснения эффекта допускаем, что свет, идущий от источника света, связан с источником и распространяется от него со скоростью с = 3 · 10 8 м/с относительно источника. Для приемника скорость света относительно источника будет складываться со скоростью источникаv .

Чтобы определить зависимость частоты света ν от скорости v , рассмотрим распространение света от двух источников, один из которых Ѕ движется по направлению от приемника со скоростью v , а другой S 0 покоится.

Рис. 1.

Одинаковые источники излучают свет одинаковой частоты ν 0 . Свет относительно источников распространяется с одинаковой скоростью с , поэтому и длина излучаемой волны λ 0 будет одинакова. К приемнику от движущегося источника свет подойдет со скоростью с- v и длина волны λ 0 будет принята за время Т = (период), а от покоящегося источника - за время Т 0 = . Периоды есть величины обратные частотам колебаний и . Подставим значения Т и Т 0 в полученные равенства

разделив их почленно, получаем

,

получаем [с. 181].

(1)

В случае, когда источник и приемник сближаются, надо знак v заменить на противоположный, получим . Отметим, что с- v и c - это скорости света соответственно относительно приемника и источника света.

Теперь рассмотрим случай, когда источник света движется перпендикулярно направлению на приемник. Учитывая, что свет связан с источником, распространяется относительно его со скоростью с и сносится с ним со скоростью v , чтобы он попал на приемник его надо направить под некоторым углом α так, что sinα = . В этом случае составляющая скорости света, совпадающая с направлением на приемник А будет , составляющая v на это направление равна 0. Чтобы не повторять предыдущие рассуждения, воспользуемся формулой (1), с- v заменим на , а скорость с относительно источника останется неизменной. В результате получаем:

что соответствует результату, полученному в опытах Айвса [с. 181].

Рис. 2.

При переходе света от источника к приемнику меняется его частота от ν 0 до ν. Из формулы с=λν следует, что должна меняться и длина волны. Если от источника света шла волна длиной λ 0 , то приемник получит ее другой, допустим λ . Получить значение λ можно, воспользовавшись тем, что λ и ν величины обратно пропорциональные . Подставив значение ν из формулы (1), получим

Для большей уверенности получим эту формулу другим способом.

Любой приемник света может быть и излучателем, значит, он имеет такую же светонесущую среду, как и источник, и свет в ней распространяется со скоростью с . Свет, переходя из среды источника в среду приемника, получает скорость с относительно приемника.

Волна длиной λ 0 от источника к границе раздела сред источника и приемника подходит со скоростью с - v и границу пройдет за время C самого начала входа волны в сферу среды приемника ее начало приобретает скорость с относительно приеника и за время Т пройдет путь λ = сТ. Подставив значение Т , получаем:

Рис. 3.

В первой половине ХХ в. американский ученый Хаббл в спектрах далеких звезд обнаружил смещение спектральных линий в сторону красной части спектра по сравнению с лабораторными спектрами - «красное смещение». Это означало, что длина принимаемой волны λ больше, чем λ 0 и чем дальше звезда, тем больше «красное смещение».

В формулу (2) входят четыре величины λ, λ 0 , с и v . Кo времени открытия «красного смещения» скорость света с постулатом Эйнштейна была закреплена постоянной относительно любой системы отсчета, значит, и λ 0 , связанная со скоростью света с и источником излучения, оказалась постоянной. В формуле (2) переменная величина λ , оказалась связанной со скоростью источникаv . Увеличение λ вызывает и увеличение v .

«Красное смещение» наблюдается у звезд, расположенным по всем направлениям, поэтому был признан факт расширения Вселенной.

В астрономии связь между λ и v определяется другой формулой

(3)

для удаляющегося источника излучения.

Для одного и того же явления и одних и тех же величин двумя формулами устанавливается разная зависимость! Чтобы разобраться с этим, сравним результаты, которые дают эти формулы при различных v . Ограничений на значение скорости v формулы не требуют. Для удобства длины волн обозначим λ 3 и λ 2 соответственно обозначению формул (3) и (2 ), в которые они входят. При v =0 :

При 0< v < с сравним делением:

Если v «с , то и λ 3 ≈ λ 2 . При этих двух условиях результаты практически не противоречат друг другу.

При v = с; λ 2 превращается в бесконечность, при этом формула (1) дает . Получается, что световая волна от источника к приемнику не попадает, она со скоростью с от источника будет двигаться к приемнику и вместе с источником будет с такой же скоростью уходить от него с - с = 0 .

Третье сравнение требует сделать вывод, какая же формула правильно отражает действительность. Происхождение формулы (2) рассмотрено в начале статьи. Теперь рассмотрим, как получается формула (3).

Рис. 4.

Представим, что источник света окружен средой, в которой свет распространяется к приемнику со скоростью с . Источник света в точке А начал излучать волну. Время излучения одной волны обозначим Т (период). С момента появления начала волны оно начинает перемещаться к приемнику в окружающей среде со скоростью с и за время Т удалится от точки А на расстояние сТ . Но за это же время источник, двигаясь от приемника окажется в точке С , пройдя расстояние АС = v Т , где и окажется конец волны. Расстояние от С до В и будет длиной волны λ = сТ + v Т = (с + v

Если источник не движется, то v = 0 и длина волны будет λ 0 = сТ. Разделив λ на λ 0 , получим:

В начале статьи мы рассмотрели среду, которая обеспечивает скорость света с, она либо связана с источником, либо с приемником света. Первая - дает формулы (1) и (2). Вероятность того, что вторая, от далеко расположенного приемника света, на скорость света больше влияла, чем среда источника света, ничтожно мала. Остается среда, не связанная ни с источником ни с приемником света, которая действует подобно воздуху (веществу) на распространение звука. Но отрицательный результат опытов Майкельсона по обнаружению «эфирного ветра» доказал, что такой среды в природе нет. Остается сделать предпочтение формуле (2). Ранее отмечалось, что при удалении источника света со скоростью v = с волна не достигнет приемника, и сигнал не будет получен.

Хабл ввел закон, носящий его имя [с. 120]

v = НD ,

где v - скорость удаления источника света, D - расстояние между источником и приемником, Н - коэффициент пропорциональности, называемой постоянной Хабла.

.

1 Мпк = 10 6 пк; 1пк (парсек) = 3,26 светового года = 3 . 10 13 км.

Найдем расстояние, при котором v = с: ;

D - это радиус сферы, ограничивающей прием прямого электромагнитного излучения из просторов Вселенной. Из прилегающих к этой сфере зон во внутренней ее части электромагнитные излучения могут приходить только в виде радиоволн. В природе не наблюдается какого-либо приоритетного направления в распределения звезд, поэтому радиоизлучение должно приходить со всех сторон равномерно.

Рассмотрим вариант, когда v >с. В этом случае формулы (1) и (2) дают: и .

Это означает, что волна должна приходить с направления, противоположного тому, где находиться излучатель.

При v = 2с имеем

.

Волна придет без «красного смещения». Определенная в статье граница возможного приема электромагнитного излучения будет верной, если верен закон Хаббла и «красное смещение» вызвано исключительно удалением излучателя. Если же обнаружатся другие факторы, уменьшающие скорость света относительно приемника (а они могут быть), то граница приема волн может быть приближена.

Обратимся теперь к формулам (1) и (2). В них c-v есть скорость света относительно приёмника, обозначим её с 1 =с-v откуда v=c-c 1 .В формулах v представляет разность скоростей света независимо от природы её возникновения. Принято считать, что это результат удаления источника света. Но эта разность скоростей может возникнуть и за счет уменьшения скорости света с увеличением расстояния. Свет это поток квантов энергии и, возможно, что скорость их может уменьшаться.

Предположим, что скорость света с увеличением расстояния от источника света уменьшается, образно говоря «свет стареет».

Известно, что скорость света уменьшается при переходе из оптически менее плотной среды в более плотную. Вызвано это тем, что, что меняются условия для прохождения света. Уменьшение скорости характеризуется показателем преломления n; , где с - скорость света в вакууме а с 1 - скорость в другой среде.

Если по предположению, скорость света уменьшается с увеличением расстояния от источника света, то, значит, меняются и условия его прохождения, что также можно характеризовать показателем преломления n. Получаем, что уменьшенная скорость света будет .

В статье «Опыт Физо» (ж. «Современные наукоёмкие технологии» №2, 2007г.) для определения скорости света в движущейся среде показатель преломления n был использован в виде , где часть показателя, определяемая излучающим атомом, а определяется условиями прохождения света в среде.

Применим такое представление показателя преломления и для вакуума. Если мы приняли предположение, что в вакууме скорость света уменьшается, а вакуум является однородной средой, то уменьшение скорости света должно зависеть только от расстояния и пропорционально ему. Поэтому можно записать ,где D -расстояние до источника света, μ - коэффициент пропорциональности постоянная величина. Скорость принимаемого света будет

Разность между начальной и уменьшенной скоростями света будет

Здесь выражена зависимость между уменьшением скорости света и расстоянием D . Связь между этими же величинами выражает и закон Хабла где v - скорость удаления звезды, что для приёмника света есть разность с-с 1 .

Сравним значения v , которые дают эти два уравнения для предельных значений расстояния D.

Если , то из первого уравнения получаем: , n =1 (для малых расстояний) и . Из закона Хаббла также получаем .

Если это совпадение не случайно, можно предположить, что кванты световой энергии связаны с излучателем, на это же указывает и связь светонесущей среды с источником света.

Чтобы определить скорость с 1 , надо решить относительно n уравнение:

и через n найти скорость с 1 .

Для малых значений D можно использовать закон Хаббла.

В статье имеется явное противоречие. Основываясь на понятии о расширении Вселенной, получен вывод о существовании границы возможного приема электромагнитных волн, а, основываясь на естественном уменьшении скорости света, такая граница отсутствует. Получается, что обнаружение такой границы будет являться доказательством расширения Вселенной.

В статье также без убедительных оснований принято предположение о зависимости скорости света от расстояний. Основания для этого предположения будут обнаружены при рассмотрении процесса излучения квантов света атомом.

СПИСОК ЛИТЕРАТУРЫ:

  1. Зисман Г.А., Тодес О.М., Курс общей физики т.3. - М.: «Наука», 1972г.
  2. Воронцов - Вельяминов Б.А. Астрономия 10. - М.: «Просвещение», 1983г.

Библиографическая ссылка

Юшкевич Р.С., Дегтярева Е.Р. ЭФФЕКТ ДОПЛЕРА И СКОРОСТЬ СВЕТА // Фундаментальные исследования. – 2008. – № 3. – С. 17-24;
URL: http://fundamental-research.ru/ru/article/view?id=2764 (дата обращения: 16.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Известно, что при приближении к неподвижному наблюдателю быстро движущегося электропоезда его звуковой сигнал кажется более высоким, а при удалении от наблюдателя – более низким, чем сигнал того же электропоезда, но неподвижного.

Эффектом Доплера называют изменение частоты волн, регистрируемых приемником, которое происходит вследствие движения источника этих волн и приемника.

Источник, двигаясь к приемнику, как бы сжимает пружину – волну (рис. 5.6).

Данный эффект наблюдается при распространении звуковых волн (акустический эффект) и электромагнитных волн (оптический эффект).

Рассмотрим несколько случаев проявления акустического эффекта Доплера .

Пусть приемник звуковых волн П в газообразной (или жидкой) среде неподвижен относительно нее, а источник И удаляется от приемника со скоростью вдоль соединяющей их прямой (рис. 5.7, а ).

Источник смещается в среде за время, равное периоду его колебаний, на расстояние , где – частота колебаний источника.

Поэтому при движении источника длина волны в среде отлична от ее значения при неподвижном источнике:

,

где – фазовая скорость волны в среде.

Частота волны, регистрируемая приемником,

(5.7.1)

Если вектор скорости источника направлен под произвольным углом к радиус-вектору , соединяющему неподвижный приемник с источником (рис. 5.7, б ), то

(5.7.2)

Если источник неподвижен, а приемник приближается к нему со скоростью вдоль соединяющей их прямой (рис. 5.7, в ), то длина волны в среде . Однако, скорость распространения волны относительно приемника равна , так что частота волны, регистрируемая приемником

(5.7.3)

В том случае, когда скорость направлена под произвольным углом к радиус-вектору , соединяющему движущийся приемник с неподвижным источником (рис. 5.7, г ), имеем:

Эту формулу можно также представить в виде (если )

, (5.7.6)

где – скорость источника волны относительно приемника, а – угол между векторами и . Величина , равная проекции на направление , называется лучевой скоростью источника.

Оптический эффект Доплера

При движении источника и приемника электромагнитных волн относительно друг друга также наблюдается эффект Доплера , т.е. изменение частоты волны , регистрируемой приемником. В отличие от рассмотренного нами эффекта Доплера в акустике, закономерности этого явления для электромагнитных волн можно установить только на основе специальной теории относительности.

Соотношение, описывающее эффект Доплера для электромагнитных волн в вакууме, с учетом преобразований Лоренца, имеет вид:

. (5.7.7)

При небольших скоростях движения источника волн относительно приемника, релятивистская формула эффекта Доплера (5.7.7) совпадает с классической формулой (5.7.2).

Если источник движется относительно приемника вдоль соединяющей их прямой, то наблюдается продольный эффект Доплера .

В случае сближения источника и приемника ()

, (5.7.8)

а в случае их взаимного удаления ()

. (5.7.9)

Кроме того, из релятивистской теории эффекта Доплера следует существование поперечного эффекта Доплера , наблюдающегося при и , т.е. в тех случаях, когда источник движется перпендикулярно линии наблюдения (например источник движется по окружности, приемник в центре):

. (5.7.10)

Поперечный эффект Доплера необъясним в классической физике. Он представляет чисто релятивистский эффект.

Как видно из формулы (5.7.10), поперечный эффект пропорционален отношению , следовательно он значительно слабее продольного, который пропорционален (5.7.9).

В общем случае вектор относительной скорости можно разложить на составляющие: одна обеспечивает продольный эффект, другая – поперечный.

Существование поперечного эффекта Доплера следует непосредственно из замедления времени в движущихся системах отсчета.

Впервые экспериментальная проверка существования эффекта Доплера и правильности релятивистской формулы (5.7.7) была осуществлена американскими физиками Г. Айвсом и Д. Стилуэллом в 30-х гг. Они с помощью спектрографа исследовали излучение атомов водорода, разогнанных до скоростей м/с. В 1938 г. результаты были опубликованы. Резюме: поперечный эффект Доплера наблюдался в полном соответствии с релятивистскими преобразованиями частоты (спектр излучения атомов оказался сдвинут в низкочастотную область); вывод о замедлении времени в движущихся инерциальных системах отсчета подтвержден.

Эффект Доплера нашел широкое применение в науке и технике. Особенно большую роль это явление играет в астрофизике. На основании доплеровского смещения линий поглощения в спектрах звезд и туманностей можно определять лучевые скорости этих объектов по отношению к Земле: при по формуле (5.7.6)

. (5.7.11)

Американский астроном Э. Хаббл обнаружил в 1929 г. явление, получившее название космологического красного смещения и состоящее в том, что линии в спектрах излучения внегалактических объектов смещены в сторону меньших частот (больших длин волн). Оказалось, что для каждого объекта относительное смещение частоты ( – частота линии в спектре неподвижного источника, – наблюдаемая частота) совершенно одинаково по всем частотам. Космологическое красное смещение есть не что иное, как эффект Доплера. Оно свидетельствует о том, что Метагалактика расширяется, так что внегалактические объекты удаляются от нашей Галактики.

Под Метагалактикой понимают совокупность всех звездных систем. В современные телескопы можно наблюдать часть Метагалактики, оптический радиус которой равен . Существование этого явления было теоретически предсказано еще в 1922 г. советским ученым А.А. Фридманом на основе развития общей теории относительности.

Хаббл установил закон, согласно которому относительное красное смещение галактик растет пропорционально расстоянию до них .

Закон Хаббла можно записать в виде

, (5.7.12)

где H – постоянная Хаббла. По самым современным оценкам, проведенным в 2003 г., . (1 пк (парсек) – расстояние, которое свет проходит в вакууме за 3,27 лет ()).

В 1990 г. на борту шаттла «Дискавери» был выведен на орбиту космический телескоп имени Хаббла (рис. 5.8).

Рис. 5.8 Рис. 5.9

Астрономы давно мечтали о телескопе, который работал бы в видимом диапазоне, но находился за пределами земной атмосферы, сильно мешающей наблюдениям. «Хаббл» не только не обманул возлагавшихся на него надежд, но даже превзошел практически все ожидания. Он фантастически расширил «поле зрения» человечества, заглянув в немыслимые глубины Вселенной. За время своей работы космический телескоп передал на землю 700 тыс. великолепных фотографий (рис. 5.9). Он, в частности, помог астрономам определить точный возраст нашей Вселенной – 13,7 млрд. лет; помог подтвердить существование во Вселенной странной, но оказывающей огромное влияние, формы энергии – темной энергии; доказал существование сверхмассивных черных дыр; удивительно четко заснял падение кометы на Юпитер; показал, что процесс формирования планетных систем является широко распространенным в нашей Галактике; обнаружил небольшие протогалактики, зарегистрировав излучение, испущенное ими, когда возраст Вселенной составлял менее 1 млрд. лет.

На эффекте Доплера основаны радиолокационные лазерные методы измерения скоростей различных объектов на Земле (например автомобиля, самолета и др.). Лазерная анемометрия является незаменимым методом изучения потока жидкости или газа. Хаотическое тепловое движение атомов светящегося тела также вызывает уширение линий в его спектре, которое возрастает с увеличением скорости теплового движения, т.е. с повышением температуры газа. Это явление можно использовать для определения температуры раскаленных газов.


Самое обсуждаемое
Николай коперник и его гелиоцентрическая система Николай коперник и его гелиоцентрическая система
Как образуется гром. Что такое молния? Что такое гром? Некоторые интересные факты Как образуется гром. Что такое молния? Что такое гром? Некоторые интересные факты
Шпион, выйди вон: как Фаддей Булгарин вошел в историю Фаддей булгарин биография Шпион, выйди вон: как Фаддей Булгарин вошел в историю Фаддей булгарин биография


top