Самое сильное взрывчатое вещество. Самые мощные в мире взрывчатки

Самое сильное взрывчатое вещество. Самые мощные в мире взрывчатки

Каждое новое поколение пытается перещеголять поколения предыдущие в том, что называется начинкой для адских машинок и другого , другими словами – в поисках мощного взрывчатого вещества. Казалось бы, эпоха взрывчатки в виде пороха понемногу уходит в , однако поиски новых взрывчатых веществ не прекращаются. Чем меньше масса взрывчатого вещества, и чем больше его поражающая сила, тем лучшим оно представляется военным специалистам. Активизировать поиски такого взрывчатого вещества диктует робототехника, а также использование небольших ракет и бомб большой поражающей силы на БПЛА.

Естественно, что идеальное с военной точки зрения вещество вряд ли вообще будет когда либо обнаружено, но вот недавние разработки говорят о том, что нечто близкое к такому понятию получить всё же можно. Под близостью к идеальности здесь понимается стабильное хранение, высокая поражающая сила, небольшой объем и легкая транспортировка. Не нужно забывать, что цена такого взрывчатого вещества тоже должна быть приемлемой, иначе создание на его основе оружия может просто опустошить военный бюджет той или иной страны.

Разработки уже долгое время идут вокруг использования химических формул таких веществ, как тринитротолуол, пентрит, гексоген и ряд других. Однако в полной мере новинок «взрывная» наука предложить может крайне редко.
Именно поэтому появление такого вещества как гексантирогексаазаизовюрцитан (название – язык сломаешь) можно считать настоящим прорывом в своей области. Чтобы не ломать язык, ученые решили дать этому веществу более удобоваримое название – CL-20.
Это вещество впервые было получено еще около 26 лет назад – в далеком уже 1986 году в американском штате Калифорния. Его особенность заключается в том, что плотность энергии в этом веществе пока максимальная в сравнении с другими веществами. Высокая энергетическая плотность CL-20 и малая конкуренция при его производстве приводят к тому, что стоимость такой взрывчатки сегодня просто астрономическая. Один килограмм CL-20 стоит около 1300 долларов. Естественно, что такая цена не позволяет использовать взрывчатый агент в промышленных масштабах. Однако уже вскоре, считают эксперты, цена этой взрывчатки может существенно упасть, так как есть варианты по альтернативному синтезу гексантирогексаазаизовюрцитана.

Если сравнивать гексантирогексаазаизовюрцитан с самым эффективным на сегодняшний день взрывчатым веществом, применяемым в военных целях (октогеном), то стоимость последнего составляет около ста долларов за кг. Однако именно гексантирогексаазаизовюрцитан проявляет большую эффективность. Скорость детонации CL-20 составляет 9660 м/с, что на 560 м/с больше, чем у октогена. Плотность CL-20 также выше, чем у того же октогена, а значит, и с перспективами у гексантирогексаазаизовюрцитана тоже должно быть всё в порядке.

Одним из возможных направлений в применении CL-20 сегодня считают беспилотники. Однако здесь есть проблема, потому что CL-20 очень чувствителен к механическим воздействиям. Даже обычная тряска, которая вполне может произойти с БПЛА в воздухе способна вызвать детонацию вещества. Чтобы избежать взрыва самого беспилотника специалисты предложили использовать CL-20 в интеграции с пластиковым компонентом, который будет снижать уровень механического воздействия. Но как только такие эксперименты провели, оказалось, что гексантирогексаазаизовюрцитан (формула С6Н6N12О12) сильно теряет свои «убойные» свойства.

Получается, что перспективы у этого вещества огромные, но вот за два с половиной десятилетия им так никто и не сумел разумно распорядиться. Но эксперименты продолжаются и сегодня. Американец Адам Матцгер работает над совершенствованием CL-20, пытаясь изменить форму этой материи.

Матцгер решил использовать кристаллизацию из общего раствора для получения молекулярных кристаллов вещества. В итоге у них вышел вариант, когда на 2 молекулы CL-20 приходится 1 молекула октогена. Скорость детонации этой смеси находится между скоростями двух указанных веществ по отдельности, но при этом новое вещество гораздо стабильнее самого CL-20 и эффективнее октогена.

Чем ни самая эффективная взрывчатка в мире?..

Терминология

Сложность и разнообразие химии и технологии ВВ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.

Промышленное применение

ВВ широко используются и в промышленности для производства различных взрывных работ . Ежегодный расход ВВ в странах с развитым промышленным производством даже в мирное время составляет сотни тысяч тонн. В военное время расход ВВ резко возрастает. Так, в период 1-й мировой войны в воюющих странах он составил около 5 миллионов тонн, а во 2-й мировой войне превысил 10 миллионов тонн. Ежегодное использование ВВ в США в 1990-х годах составляло около 2 миллионов тонн.

  • метательные
    Метательные ВВ (пороха и ракетные топлива) служат источниками энергии для метания тел (снарядов, мин, пуль и т. д.) или движения ракет. Их отличительная особенность - способность к взрывчатому превращению в форме быстрого сгорания, но без детонации.
  • пиротехнические
    Пиротехнические составы применяются для получения пиротехнических эффектов (светового, дымового, зажигательного, звукового и т. д.). Основной вид взрывчатых превращений пиротехнических составов - горение.

Метательные ВВ (пороха) применяются в основном в качестве метательных зарядов для различного рода оружия и предназначаются для придания снаряду (торпеде, пуле и т.д.) определенной начальной скорости. Преимущественным видом химического превращения их является быстрое сгорание, вызываемое лучом огня от средств воспламенения. Пороха делятся на две группы:

а) дымные;

б) бездымные.

Представителями первой группы могут служить черные пороха, представляющие собой смесь селитры, серы и угля, например артиллерийский и ружейный пороха, состоящие из 75% калиевой селитры, 10% серы и 15% угля. Температура вспышки дымных порохов равна 290 - 310° С.

Ко второй группе относятся пироксилиновые, нитроглицериновые, дигликолевые и другие пороха. Температура вспышки бездымных порохов равна 180 - 210° С.

Пиротехнические составы (зажигательные, осветительные, сигнальные и трассирующие), применяемые для снаряжения специальных боеприпасов, представляют собой механические смеси из окислителей и горючих веществ. При обычных условиях применения они, сгорая, дают соответствующий пиротехнический эффект (зажигательный, осветительный и т. д.). Многие из этих составов обладают также и взрывчатыми свойствами и при определенных условиях могут детонировать.

По методу приготовления зарядов

  • прессованные
  • литые (взрывчатые сплавы)
  • патронированные

По направлениям применения

  • военные
  • промышленные
  • для горного дела (добыча полезных ископаемых, производство стройматериалов, вскрышные работы)
    Промышленные ВВ для горных работ по условиям безопасного применения подразделяют на
  • непредохранительные
  • предохранительные
  • для строительства (плотин, каналов, котлованов, дорожных выемок и насыпей)
  • для сейсморазведки
  • для разрушения строительных конструкций
  • для обработки материалов (сварка взрывом, упрочнение взрывом, резание взрывом)
  • специального назначения (например, средства расстыковки космических аппаратов)
  • антисоциального применения (терроризм , хулиганство), при этом часто используются низкокачественные вещества и смеси кустарного изготовления.
  • опытно-экспериментальные.

По степени опасности

Существуют различные системы классификации ВВ по степени опасности. Наиболее известны:

  • Согласованная на глобальном уровне система классификации опасности и маркировки химической
  • Классификация по степени опасности в горных работах;

Сама по себе энергия взрывчатого вещества невелика. При взрыве 1 кг тротила выделяется в 6-8 раз меньше энергии, чем при сгорании 1 кг угля, но эта энергия при взрыве выделяется в десятки миллионов раз быстрее, чем при обычных процессах горения. Кроме того, уголь не содержит окислителя.

См. также

Литература

  1. Советская военная энциклопедия. М., 1978.
  2. Поздняков З. Г., Росси Б. Д. Справочник по промышленным взрывчатым веществам и средствам взрывания. - М.: «Недра», 1977. - 253 c.
  3. Fedoroff, Basil T. et al Enciclopedia of Explosives and Related Items, vol.1-7. - Dover, New Jersey: Picatinny Arsenal, 1960-1975.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Wikimedia Foundation . 2010 .

Смотреть что такое "Взрывчатые вещества" в других словарях:

    - (a. explosives, blasting agents; н. Sprengstoffe; ф. explosifs; и. explosivos) хим. соединения или смеси веществ, способные в определённых условиях к крайне быстрому (взрывному) саморас пространяющемуся хим. превращению c выделением тепла … Геологическая энциклопедия

    - (Explosive matter) вещества, которые способны дать явление взрыва в силу химического превращения их в газы или пары. В. В. делятся на метательные пороха, бризантные оказывающие дробящее действие и инициирующие для воспламенения и детонации других … Морской словарь

    ВЗРЫВЧАТЫЕ ВЕЩЕСТВА, вещество, которое быстро и резко реагирует на определенные условия, с выделением тепловых, световых, звуковых и ударных волн. Химические взрывчатые вещества по большей части представляют собой соединения с высоким содержанием … Научно-технический энциклопедический словарь

Большую часть истории человек использовал для уничтожения себе подобных всевозможные виды холодного оружия, начиная от незамысловатого каменного топора, и заканчивая весьма продвинутыми и сложными в изготовлении металлическими орудиями. Примерно в XI–XII столетии в Европы начали применять пушки, и тем самым человечество познакомилось с важнейшим взрывчатым веществом – черным порохом.

Это был поворотный момент в военной истории, хотя понадобилось еще примерно восемь столетий, чтобы огнестрельное оружие полностью вытеснило с полей сражений остро наточенную сталь. Параллельно прогрессу пушек и мортир развивались взрывчатые вещества — причем не только порох, но и всевозможных составов для снаряжения артиллерийских снарядов или изготовления фугасов. Разработка новых взрывчатых веществ и взрывных устройств активно продолжается и в наши дни.

Сегодня известны десятки взрывчатых веществ. Помимо военных нужд, взрывчатка активно применяется в горном деле, при строительстве дорог и туннелей. Однако прежде чем говорить об основных группах взрывчатых веществ, следует несколько подробнее упомянуть о процессах, происходящих во время взрыва и понять принцип действия взрывчатых веществ (ВВ).

Взрывчатка: что это такое?

Взрывчатые вещества – это большая группа химических соединений или смесей, которые под воздействием внешних факторов способны к быстрой, самоподдерживающейся и неуправляемой реакции с выделением большого количества энергии. Проще говоря, химический взрыв – это процесс преобразования энергии молекулярных связей в тепловую энергию. Обычно его результатом является большое количество раскаленных газов, которые и выполняют механическую работу (дробление, разрушение, перемещение и др.).

Классификация взрывчатых веществ довольно сложна и запутанна. К ВВ относятся вещества, которые распадаются не только в процессе взрыва (детонации), но и медленного или быстрого горения. К последней группе относятся пороха и различные виды пиротехнических смесей.

Вообще, понятия «детонация» и «дефлаграция» (горение) являются ключевыми для понимания процессов химического взрыва.

Детонацией называют стремительное (сверхзвуковое) распространение фронта сжатия с сопутствующей ему экзотермической реакцией во взрывчатом веществе. В этом случае химические превращения идут настолько бурно и выделяется такое количество тепловой энергии и газообразных продуктов, что в веществе образуется ударная волна. Детонация – это процесс максимально быстрого, можно сказать, лавинообразного вовлечения вещества в реакцию химического взрыва.

Дефлаграция, или горение – это тип окислительно-восстановительной химической реакции, во время которой ее фронт перемещается в веществе за счет обычной теплоотдачи. Подобные реакции хорошо всем известны и часто встречаются в повседневной жизни.

Любопытно, что энергия, выделяемая при взрыве, не так уж и велика. Например, при детонации 1 кг тротила ее выделяется в несколько раз меньше, чем при сгорании 1 кг каменного угля. Однако при взрыве это происходит в миллионы раз быстрее, вся энергия выделяется практически мгновенно.

Следует отметить, что скорость распространения детонации – это важнейшая характеристика взрывчатых веществ. Чем она выше, тем более эффективен заряд взрывчатки.

Чтобы запустить процесс химического взрыва необходимо воздействие внешнего фактора, он может быть нескольких видов:

  • механический (накол, удар, трение);
  • химический (реакция какого-либо вещества с зарядом взрывчатки);
  • внешняя детонация (взрыв в непосредственной близости от ВВ);
  • тепловой (пламя, нагревание, искра).

Следует отметить, что разные виды ВВ имеют различную чувствительность к внешним воздействиям.

Некоторые из них (например, черный порох) прекрасно реагируют на тепловое воздействие, но при этом практически не откликается на механическое и химическое. А для подрыва тротила нужно только детонационное воздействие. Гремучая ртуть бурно реагирует на любой внешний раздражитель, а есть некоторые ВВ, которые детонируют вообще безо всякого внешнего воздействия. Практическое использование таких «взрывоопасных» ВВ попросту невозможно.

Основные свойства ВВ

Главными из них являются:

  • температура продуктов взрыва;
  • теплота взрыва;
  • скорость детонации;
  • бризантность;
  • фугасность.

На последних двух пунктах следует остановиться отдельно. Бризантность ВВ – это его способность разрушать прилегающую к нему среду (горную породу, металл, дерево). Данная характеристика во многом зависит от физического состояния, в котором находится взрывчатка (степень измельчения, плотность, однородность). Бризантность напрямую зависит от скорости детонации взрывчатого вещества — чем она выше, тем лучше ВВ может дробить и разрушать окружающие предметы.

Бризантные взрывчатые вещества обычно используют для снаряжения артиллерийских снарядов, авиабомб, мин, торпед, гранат и других боеприпасов. Этот тип ВВ менее чувствителен к внешним факторам, чтобы подорвать такой заряд взрывчатого вещества необходима внешняя детонация. В зависимости от своей разрушительной силы бризантные взрывчатые вещества делятся на:

  • Повышенной мощности: гексоген, тетрил, оксоген;
  • Средней мощности: тротил, мелинит, пластид;
  • Пониженной мощности: ВВ на основе аммиачной селитры.

Чем выше бризантность ВВ, тем лучше оно разрушит корпус бомбы или снаряда, придаст осколкам большую энергию и создаст более мощную ударную волну.

Не менее важным свойством взрывчатых веществ является его фугасность. Это самая общая характеристика любого ВВ, она показывает насколько та или иная взрывчатка обладает разрушающей способностью. Фугасность напрямую зависит от количества газов, которые образовываются при взрыве. Следует отметить, что бризантность и фугасность, как правило, не связаны между собой.

Фугасность и бризантность определяют то, что мы называем мощностью или силой взрыва. Однако для различных целей необходимо подбирать соответствующие виды ВВ. Бризантность очень важна для снарядов, мин и авиабомб, а вот для горных работ больше подойдет взрывчатка со значительным уровнем фугасности. На практике подбор ВВ гораздо более сложен, и чтобы правильно выбрать взрывчатку, следует учитывать все ее характеристики.

Существует общепринятый способ определения мощности различных взрывчатых веществ. Это так называемый тротиловый эквивалент, когда мощность тротила условно принимается за единицу. Используя этот способ можно высчитать, что мощность 125 гр тротила равна 100 гр гексогена и 150 гр аммонита.

Еще одной важной характеристикой взрывчатых веществ является их чувствительность. Она определяется вероятностью взрыва ВВ при воздействии на него того или иного фактора. От этого параметра зависит безопасность производства и хранение взрывчатых веществ.

Чтобы лучше показать, насколько важна эта характеристика взрывчатого вещества, можно сказать, что американцы разработали специальный стандарт (STANAG 4439) для чувствительности взрывчатых веществ. И на это им пришлось пойти не от хорошей жизни, а после череды тяжелейших несчастных случаев: при подрыве на американской базе ВВС «Бьен-Хо» во Вьетнаме погибли 33 человека, вследствие взрывов на авианосце «Форрестол» были повреждены около 80 самолетов, а также после детонации авиаракет на авианосце «Орискани» (1966 год). Так что хороша не просто мощная взрывчатка, а детонирующая именно в нужный момент — и никогда больше.

Все современные ВВ – это либо химические соединения, либо механические смеси. К первой группе относятся гексоген, тротил, нитроглицерин, пикриновая кислота. Химические взрывчатые вещества, как правило, получают нитрованием различных видов углеводородов, что приводит к введению в их молекулы азота и кислорода. Ко второй группе – аммиачно-селитренные ВВ. В состав взрывчатых веществ подобного типа обычно входят вещества, богатые кислородом и углеродом. Для повышения температуры взрыва в смеси часто добавляют порошки металлов: алюминия, бериллия, магния.

Кроме всех вышеперечисленных свойств, любое взрывчатое вещество должно быть химически стойким и пригодным для длительного хранения. В 80-х годах прошлого века китайцы сумели синтезировать мощнейшую взрывчатку – трициклическую мочевину. Ее мощность превосходила тротил в двадцать раз. Проблема была в том, что через несколько дней после изготовления вещество разлагалось и превращалось в слизь, непригодную для дальнейшего использования.

Классификация взрывчатых веществ

По своим взрывчатым свойствам ВВ делятся на:

  1. Инициирующие. Они используются для подрыва (детонации) других взрывчатых веществ. Основными отличиями ВВ этой группы является высокая чувствительность к инициирующим факторам и высокая скорость детонации. К этой группе относятся: гремучая ртуть, диазодинитрофенол, тринитрорезорцинат свинца и другие. Как правило, эти соединения используются в капсюлях-воспламенителях, запальных трубках, капсюлях-детонаторах, пиропатронах, самоликвидаторах;
  2. Бризантные взрывчатые вещества. Этот тип ВВ обладает значительным уровнем бризантности и используется в качестве основного заряда для подавляющего большинства боеприпасов. Эти мощные взрывчатые вещества отличаются по своему химическому составу (N-нитрамины, нитраты, другие нитросоединения). Иногда их используют в виде различных смесей. Бризантные взрывчатые вещества также активно используют в горном деле, при прокладке туннелей, проведении других инженерных работ;
  3. Метательные взрывчатые вещества. Являются источником энергии для метания снарядов, мин, пуль, гранат, а также для движения ракет. К этому классу взрывчатых веществ относятся пороха и различные виды ракетного топлива;
  4. Пиротехнические составы. Используются для снаряжения специальных боеприпасов. При сгорании производят специфический эффект: осветительный, сигнальный, зажигательный.

Взрывчатые вещества разделяют и по их физическому состоянию на:

  1. Жидкие. Например, нитрогликоль, нитроглицерин, этилнитрат. Существуют и разнообразные жидкостные смеси ВВ (панкластит, взрывчатые вещества Шпренгеля);
  2. Газообразные;
  3. Гелеобразные. Если растворить нитроцеллюлозу в нитроглицерине, то получится так называемый гремучий студень. Это крайне нестабильное, но довольно мощное взрывчатое гелеобразное вещество. Его любили использовать российские революционеры-террористы в конце XIX века;
  4. Суспензии. Довольно обширная группа взрывчатых веществ, которые в наши дни применяются для промышленных целей. Существуют различные виды взрывчатых суспензий, в которых ВВ либо окислитель является жидкой средой;
  5. Эмульсионные взрывчатые вещества. Весьма популярный в наши дни вид ВВ. Часто используется в строительных или шахтных работах;
  6. Твердые. Наиболее распространенная группа ВВ. К ней относятся практически все взрывчатые вещества, используемые в военном деле. Могут быть монолитными (тротил), гранулированными или порошкообразными (гексоген);
  7. Пластичные. Эта группа взрывчатых веществ обладает пластичностью. Такая взрывчатка стоит дороже обычной, поэтому ее редко применяют для снаряжения боеприпасов. Типичным представителем этой группы является пластид (или пластит). Его часто используют при проведении диверсий для подрыва конструкций. По своему составу пластид – это смесь гексогена и какого-либо пластификатора;
  8. Эластичные.

Немного истории ВВ

Первым взрывчатым веществом, которое было придумано человечеством, стал черный порох. Считается, что он был изобретен в Китае еще в VII веке нашей эры. Однако надежных подтверждений этому до сих пор так и не обнаружено. Вообще вокруг пороха и первых попыток его применения создано немало мифов и явно фантастических историй.

Существуют древнекитайские тексты, в которых описаны смеси, похожие по составу на черный дымный порох. Их использовали в качестве лекарств, а также для пиротехнических шоу. Кроме того, есть многочисленные источники, утверждающие, что в следующих столетиях китайцы активно использовали порох для производства ракет, мин, гранат и даже огнеметов. Правда, иллюстрации некоторых видов этого древнего огнестрельного оружия заставляют усомниться в возможности его практического применения.

Еще до пороха в Европе стали применять «греческий огонь» - горючее взрывчатое вещество, рецепт которого, к сожалению, не дошел до наших дней. «Греческий огонь» представлял собой легковоспламеняющуюся смесь, которая не только не тушилась водой, но даже становилась в контакте с ней еще более огнеопасной. Этот ВВ был придуман византийцами, они активно использовали «греческий огонь» как на суше, так и в морских баталиях, и хранили его рецептуру в строжайшем секрете. Современные эксперты считают, что в состав этой смеси входили нефть, смола, сера и негашёная известь.

Порох впервые появился в Европе примерно в середине XIII века и до сих пор неизвестно, как именно он попал на континент. Среди европейских изобретателей пороха часто упоминают имена монаха Бертольда Шварца и английского ученого Роджера Бэкона, хотя единого мнения у историков нет. По одной из версий порох, изобретенный в Китае, через Индию и Ближний Восток попал в Европу. Так или иначе, уже в XIII столетии европейцы знали о порохе и даже пытались использовать это кристаллическое взрывчатое вещество для мин и примитивного огнестрельного оружия.

Долгие столетия порох оставался единственным видом ВВ, которое знал и применял человек. Только на рубеже XVIII–XIX веков, благодаря развитию химии и других естественных наук, развитие взрывчатых веществ достигло новых высот.

В конце XVIII века благодаря французским химикам Лавуазье и Бертолле появился так называемые хлоратный порох. В это же время было изобретено «гремучее серебро», а также пикриновая кислота, которая в будущем стала использоваться для снаряжения артиллерийских снарядов.

В 1799 году английским химиком Говардом была найдена «гремучая ртуть», которая до сих пор используется в капсюлях в качестве инициирующего взрывчатого вещества. В начале XIX века был получен пироксилин – взрывчатое вещество, которым можно было не только снаряжать снаряды, но и изготавливать из него бездымный порох.динамит . Это мощное взрывчатое вещество, однако оно отличается повышенной чувствительностью. Во время Первой Мировой войны динамитом пытались снаряжать снаряды, но от этой идеи довольно быстро отказались. Динамит еще долго использовали в горных работах, но в наши дни эта взрывчатка давно не производится.

В 1863 году немецкие ученые открыли тротил, а в 1891 году в Германии началось промышленное производство этого взрывчатого вещества. В 1897 году немецкий химик Ленце синтезировал гексоген – одно из самых мощных и распространенных взрывчатых веществ в наши дни.

Разработка новых взрывчатых веществ и взрывных устройств продолжалась все прошлое столетие, исследования в этом направлении идут и сегодня.

Пентагону новую взрывчатку на основе гидразина, которая якобы была в 20 раз мощнее тротила. Однако был у этого ВВ и один ощутимый минус – абсолютно мерзкий запах заброшенного привокзального туалета. Проверка показала, что по мощности новое вещество превосходит тротил всего лишь в 2-3 раза, и от использования решили отказаться. После этого EXCOA предложила другой способ применения взрывчатого вещества: делать с его помощью окопы.

Вещество тонкой струйкой поливалось на землю, а затем подрывалось. Тем самым в считанные секунды можно было получить окоп полного профиля без лишних усилий. Несколько комплектов взрывчатки отправили во Вьетнам для испытания в боевых условиях. Конец этой истории был забавным: окопы, полученные с помощью взрыва, имели такой отвратительный запах, что солдаты отказывались находиться в них.

В конце 80-х американцы разработали новую взрывчатку – CL-20. По информации некоторых СМИ, ее мощность едва ли не в двадцать раз превышает тротил. Однако из-за своей высокой цены (1300 долларов за 1 кг) широкомасштабное производство нового ВВ так и не было начато.

С тех пор как изобрели порох не прекращается мировая гонка за самую мощную взрывчатку. Актуально это и сегодня, несмотря на появление ядерного оружия.

Гексоген – взрывоопасное лекарство

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Октоген — полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

Астролит – хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост – был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

В реальности всё закончилось грустно и анекдотично. Полученные окопы источали такой отвратительный запах, что американские солдаты стремились их покинуть любой ценой, невзирая на приказы и опасность для жизни. Те же, кто оставался, теряли сознание. Неиспользованные комплекты военнослужащие за свой счет отправили назад – в офис фирмы EXCOA.

Взрывчатка, которая убивает своих

Наряду гексогеном и октогеном, классикой взрывчатых веществ считают трудно произносимый тетранитропентаэритрит, который чаще называют тэном. Однако из-за высокой чувствительности он так и не получил широкого применения. Дело в том, что для военных целей важна не столько взрывчатка, которая разрушительнее других, сколько – та, которая при этом не взрывается от любого прикосновения, то есть с низкой чувствительностью.

Особенно придирчиво к этому вопросы относятся американцы. Именно они разработали натовский стандарт STANAG 4439 для чувствительности взрывчатки, которая может использоваться в военных целях. Правда, это произошло уже после череды тяжелейших инцидентов, в числе которых: взрыв склада на американской базе ВВС «Бьен-Хо» во Вьетнаме, стоивший жизни 33 техникам; катастрофа на борту авианосца «Форрестол», в результате которой было повреждено 60 самолетов; детонация в хранилище авиационных ракет на борту авианосца «Орискани» (1966 года) тоже с многочисленными жертвами.

Китайский разрушитель

В 80 годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу «мочевины» — один её килограмм заменял двадцать два килограмма тротила.

Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ, и при этом обладает максимальным кислородным коэффициентом. То есть, во время взрыва стопроцентно сжигается весь материал. Кстати, у тротила он равен 0.74.

В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» — динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.

Мечта пироманов – CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20кг тротила.

Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского».

В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение – отсутствие промышленных технологий.

Результаты испытаний взрывчатых веществ на проникающую способность: справа — для 30-граммового заряда октогена, слева — для такого же заряда CL-20



Поиск все более мощных взрывчатых веществ продолжается столетиями. Традиционный порох уже давно сошел со сцены, но появление компактных роботизированных средств ведения войны, в том числе и беспилотников, лишь стимулируют новые поиски. Меньшие размеры и масса боеголовок сохранят убийственную силу своих более крупных предшественников лишь благодаря новейшим достижениям химиков.

Идеальное взрывчатое вещество — это обязательно баланс между максимальной взрывчатой силой и максимальной стабильностью при хранении и транспортировке. Это еще и максимальная плотность химической энергии, минимальная цена в производстве и, желательно, экологическая безопасность. Добиться всего этого нелегко, поэтому для разработок в этой области обычно берут уже зарекомендовавшие себя формулы — ТНТ, гексоген, пентрит, гексанитростильбен и т. п. — и пытаются улучшить одну из нужных характеристик без ущерба для остальных. Полностью новые соединения появляются крайне редко.

Интересным исключением из этого правила может стать гексанитрогексаазаизовюрцитан (CL-20), готовый войти в элитный список популярных взрывчатых веществ. Впервые синтезированный в Калифорнии в 1986 г. (отсюда и CL в его сокращенном названии), он содержит химическую энергию в максимально плотном виде. Пока что его промышленно производят считанные компании по цене более 1300 долларов за килограмм, однако при переходе к большим масштабам синтеза стоимость может упасть, по мнению экспертов, в 5−10 раз.

Сегодня одним из самых эффективных боевых взрывчатых веществ является октоген , который используется в пластических зарядах и цена которого составляет порядка 100 долларов за килограмм. Однако CL-20 (взгляните на иллюстрацию слева) демонстрирует заметно большую мощность: в тестах на проникающую способность сквозь стальные блоки он на 40% более эффективен. Эта мощь обеспечивается большей скоростью детонации (9660 м/с против 9100 м/с) и большей плотностью вещества (2,04 г/см3 против 1,91).

Такая невероятная сила позволяет считать, что CL-20 будет особенно полезен в применении именно с компактными боевыми системами — такими, как современные беспилотники. Однако он опасно чувствителен к ударам и сотрясениям — примерно как пентрит , соединение, наиболее чувствительное к ним из всех используемых взрывчатых веществ. Поначалу предполагалось, что CL-20 удастся использовать вместе с пластиковым связывающим компонентом (в соотношении 9:1), хотя при этом параллельно со снижением опасности детонации снижается и взрывчатая сила.

Словом, история CL-20, начавшись в 1980-х, пока что оборачивалась не слишком удачно. Однако химики не перестают экспериментировать с ним. Одним из них стал и американский профессор Адам Матцгер (Adam Matzger), под руководством которого вещество, кажется, удалось усовершенствовать до приемлемого вида. Авторы попробовали изменить у него не структуру, а форму.

Здесь стоит сказать, что если взять смесь кристаллов двух разных веществ, отдельная молекула каждого кристалла оказывается в окружении таких же, как она, соседей. Свойства смеси оказываются чем-то средним между свойствами того и другого вещества в чистом виде. Вместо этого Матцгер с коллегами попробовали метод совместной кристаллизации из общего раствора — им удалось получить молекулярные кристаллы, содержащие оба вещества одновременно: на две молекулы CL-20 приходится одна молекула октогена.

Изучив свойства этого соединения, ученые выяснили, что скорость детонации его составляет 9480 м/с — то есть, примерно посередине между скоростями для чистых CL-20 и октогена. Зато стабильность почти так же высока, как у чистого октогена (по мнению авторов, за счет формирования между двумя типами молекул дополнительных водородных связей, которые стабилизируют чувствительную молекулу CL-20). Вдобавок, плотность кристалла примерно на 20% выше, чем у октогена, что делает его еще более эффективным. Иначе говоря, такой кристалл оказывается в сравнении с октогеном существенным улучшением и весьма перспективным кандидатом на роль нового «лучшего в мире взрывчатого вещества».



top