Степенные выражения (выражения со степенями) и их преобразование. Урок "умножение и деление степеней" Вычитание чисел с одинаковыми степенями

Степенные выражения (выражения со степенями) и их преобразование. Урок

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 - b n и h 5 -d 4 есть a 3 - b n + h 5 - d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или:
2a 4 - (-6a 4) = 8a 4
3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат - это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 - это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
Ответ: x 4 - y 4 .
Умножьте (x 3 + x - 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых - отрицательные .

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a - b, результат будет равен a 2 - b 2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a - y).(a + y) = a 2 - y 2 .
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4 .
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Или:
$\frac{9a^3y^4}{-3a^3} = -3y^4$
$\frac{a^2b + 3a^2}{a^2} = \frac{a^2(b+3)}{a^2} = b + 3$
$\frac{d\cdot (a - h + y)^3}{(a - h + y)^3} = d$

Запись a 5 , делённого на a 3 , выглядит как $\frac{a^5}{a^3}$. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются. .

Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac{yyy}{yy} = y$.

И a n+1:a = a n+1-1 = a n . То есть $\frac{aa^n}{a} = a^n$.

Или:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

h 2:h -1 = h 2+1 = h 3 или $h^2:\frac{1}{h} = h^2.\frac{h}{1} = h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac{5a^4}{3a^2}$ Ответ: $\frac{5a^2}{3}$.

2. Уменьшите показатели степеней в $\frac{6x^6}{3x^5}$. Ответ: $\frac{2x}{1}$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a - b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 - 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

9. Разделите (h 3 - 1)/d 4 на (d n + 1)/h.

Содержание урока

Что такое степень?

Степенью называют произведение из нескольких одинаковых множителей. Например:

2 × 2 × 2

Значение данного выражения равно 8

2 × 2 × 2 = 8

Левую часть этого равенстваможно сделать короче – сначала записать повторяющийся множитель и указать над ним сколько раз он повторяется. Повторяющийся множитель в данном случае это 2. Повторяется он три раза. Поэтому над двойкой записываем тройку:

2 3 = 8

Это выражение читается так: «два в третьей степени равно восемь» или «третья степень числа 2 равна 8».

Короткую форму записи перемножения одинаковых множителей используют чаще. Поэтому надо помнить, что если над каким-то числом надписано другое число, то это есть перемножение нескольких одинаковых множителей.

Например, если дано выражение 5 3 , то следует иметь ввиду, что это выражение равносильно записи 5 × 5 × 5 .

Число, которое повторяется называют основанием степени . В выражении 5 3 основанием степени является число 5 .

А число, которое надписано над числом 5 называют показателем степени . В выражении 5 3 показателем степени является число 3. Показатель степени показывает сколько раз повторяется основание степени. В нашем случае основание 5 повторяется три раза

Саму операцию перемножения одинаковых множителей называют возведением в степень .

Например, если нужно найти произведение из четырёх одинаковых множителей, каждый из которых равен 2, то говорят, что число 2 возводится в четвёртую степень :

Видим, что число 2 в четвёртой степени есть число 16.

Отметим, что в данном уроке мы рассматриваем степени с натуральным показателем . Это вид степени, показателем которой является натуральное число. Напомним, что натуральными называют целые числа, которые больше нуля. Например, 1, 2, 3 и так далее.

Вообще, определение степени с натуральным показателем выглядит следующим образом:

Степень числа a с натуральным показателем n — это выражение вида a n , которое равно произведению n множителей, каждый из которых равен a

Примеры:

Следует быть внимательным при возведении числа в степень. Часто по невнимательности человек умножает основание степени на показатель.

Например, число 5 во второй степени есть произведение двух множителей каждый из которых равен 5. Это произведение равно 25

Теперь представим, что мы по невнимательности умножили основание 5 на показатель 2

Получилась ошибка, поскольку число 5 во второй степени не равно 10.

Дополнительно следует упомянуть, что степень числа с показателем 1, есть само это число:

Например, число 5 в первой степени есть само число 5

Соответственно, если у числа отсутствует показатель, то надо считать, что показатель равен единице.

Например, числа 1, 2, 3 даны без показателя, поэтому их показатели будут равны единице. Каждое из этих чисел можно записать с показателем 1

А если возвести 0 в какую-нибудь степень, то получится 0. Действительно, сколько бы раз ничего не умножалось на само себя получится ничего. Примеры:

А выражение 0 0 не имеет смысла. Но в некоторых разделах математики, в частности анализе и теории множеств, выражение 0 0 может иметь смысл.

Для тренировки решим несколько примеров на возведение чисел в степени.

Пример 1. Возвести число 3 во вторую степень.

Число 3 во второй степени это произведение двух множителей, каждый из которых равен 3

3 2 = 3 × 3 = 9

Пример 2. Возвести число 2 в четвертую степень.

Число 2 в четвертой степени это произведение четырёх множителей, каждый из которых равен 2

2 4 =2 × 2 × 2 × 2 = 16

Пример 3. Возвести число 2 в третью степень.

Число 2 в третьей степени это произведение трёх множителей, каждый из которых равен 2

2 3 =2 × 2 × 2 = 8

Возведение в степень числа 10

Чтобы возвести в степень число 10, достаточно дописать после единицы количество нулей, равное показателю степени.

Например, возведем число 10 во вторую степень. Сначала запишем само число 10 и в качестве показателя укажем число 2

10 2

Теперь ставим знак равенства, записываем единицу и после этой единицы записываем два нуля, поскольку количество нулей должно быть равно показателю степени

10 2 = 100

Значит, число 10 во второй степени это число 100. Связано это с тем, что число 10 во второй степени это произведение двух множителей, каждый из которых равен 10

10 2 = 10 × 10 = 100

Пример 2 . Возведём число 10 в третью степень.

В данном случае после единицы будут стоять три нуля:

10 3 = 1000

Пример 3 . Возведем число 10 в четвёртую степень.

В данном случае после единицы будут стоять четыре нуля:

10 4 = 10000

Пример 4 . Возведем число 10 в первую степень.

В данном случае после единицы будет стоять один нуль:

10 1 = 10

Представление чисел 10, 100, 1000 в виде степени с основанием 10

Чтобы представить числа 10, 100, 1000 и 10000 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать число, равное количеству нулей исходного числа.

Представим число 10 в виде степени с основанием 10. Видим, что в нём один нуль. Значит, число 10 в виде степени с основанием 10 будет представлено как 10 1

10 = 10 1

Пример 2 . Представим число 100 в виде степени основанием 10. Видим, что число 100 содержит два нуля. Значит, число 100 в виде степени с основанием 10 будет представлено как 10 2

100 = 10 2

Пример 3 . Представим число 1 000 в виде степени с основанием 10.

1 000 = 10 3

Пример 4 . Представим число 10 000 в виде степени с основанием 10.

10 000 = 10 4

Возведение в степень отрицательного числа

При возведении в степень отрицательного числа, его обязательно нужно заключить в скобки.

Например, возведём отрицательное число −2 во вторую степень. Число −2 во второй степени это произведение двух множителей, каждый из которых равен (−2)

(−2) 2 = (−2) × (−2) = 4

Если бы мы не заключили в скобки число −2 , то получилось бы что мы вычисляем выражение −2 2 , которое не равно 4 . Выражение −2² будет равно −4 . Чтобы понять почему, коснёмся некоторых моментов.

Когда мы ставим перед положительным числом минус, мы тем самым выполняем операцию взятия противоположного значения .

Допустим, дано число 2, и нужно найти его противоположное число. Мы знаем, что противоположное числу 2 это число −2. Иными словами, чтобы найти противоположное число для 2, достаточно поставить минус перед этим числом. Вставка минуса перед числом уже считается в математике полноценной операцией. Эту операцию, как было указано выше, называют операцией взятия противоположного значения.

В случае с выражением −2 2 происходит две операции: операция взятия противоположного значения и возведение в степень. Возведение в степень является более приоритетной операцией, чем взятие противоположного значения.

Поэтому выражение −2 2 вычисляется в два этапа. Сначала выполняется операция возведения в степень. В данном случае во вторую степень было возведено положительное число 2

Затем выполнилось взятие противоположного значения. Это противоположное значение было найдено для значения 4. А противоположное значение для 4 это −4

−2 2 = −4

Скобки же имеют самый высокий приоритет выполнения. Поэтому в случае вычисления выражения (−2) 2 сначала выполняется взятие противоположного значения, а затем во вторую степень возводится отрицательное число −2. В результате получается положительный ответ 4, поскольку произведение отрицательных чисел есть положительное число.

Пример 2 . Возвести число −2 в третью степень.

Число −2 в третьей степени это произведение трёх множителей, каждый из которых равен (−2)

(−2) 3 = (−2) × (−2) × (−2) = −8

Пример 3 . Возвести число −2 в четвёртую степень.

Число −2 в четвёртой степени это произведение четырёх множителей, каждый из которых равен (−2)

(−2) 4 = (−2) × (−2) × (−2) × (−2) = 16

Легко заметить, что при возведении в степень отрицательного числа может получиться либо положительный ответ либо отрицательный. Знак ответа зависит от показателя исходной степени.

Если показатель степени чётный, то ответ будет положительным. Если показатель степени нечётный, ответ будет отрицательным. Покажем это на примере числа −3

В первом и в третьем случае показатель был нечётным числом, поэтому ответ стал отрицательным .

Во втором и в четвёртом случае показатель был чётным числом, поэтому ответ стал положительным .

Пример 7. Возвести число −5 в третью степень.

Число −5 в третьей степени это произведение трёх множителей каждый из которых равен −5. Показатель 3 является нечётным числом, поэтому мы заранее можем сказать, что ответ будет отрицательным:

(−5) 3 = (−5) × (−5) × (−5) = −125

Пример 8. Возвести число −4 в четвёртую степень.

Число −4 в четвёртой степени это произведение четырёх множителей, каждый из которых равен −4. При этом показатель 4 является чётным, поэтому мы заранее можем сказать, что ответ будет положительным:

(−4) 4 = (−4) × (−4) × (−4) × (−4) = 256

Нахождение значений выражений

При нахождении значений выражений, не содержащих скобки, возведение в степень будет выполняться в первую очередь, далее умножение и деление в порядке их следования, а затем сложение и вычитание в порядке их следования.

Пример 1 . Найти значение выражения 2 + 5 2

Сначала выполняется возведение в степень. В данном случае во вторую степень возводится число 5 — получается 25. Затем этот результат складывается с числом 2

2 + 5 2 = 2 + 25 = 27

Пример 10 . Найти значение выражения −6 2 × (−12)

Сначала выполняется возведение в степень. Заметим, что число −6 не взято в скобки, поэтому во вторую степень будет возведено число 6, затем перед результатом будет поставлен минус:

−6 2 × (−12) = −36 × (−12)

Завершаем пример, умножив −36 на (−12)

−6 2 × (−12) = −36 × (−12) = 432

Пример 11 . Найти значение выражения −3 × 2 2

Сначала выполняется возведение в степень. Затем полученный результат перемножается с числом −3

−3 × 2 2 = −3 × 4 = −12

Если выражение содержит скобки, то сначала нужно выполнить действия в этих скобках, далее возведение в степень, затем умножение и деление, а затем сложение и вычитание.

Пример 12 . Найти значение выражения (3 2 + 1 × 3) − 15 + 5

Сначала выполняем действия в скобках. Внутри скобок применяем ранее изученные правила, а именно сначала возводим во вторую степень число 3, затем выполняем умножение 1 × 3 , затем складываем результаты возведения в степень числа 3 и умножения 1 × 3 . Далее выполняется вычитание и сложение в порядке их следования. Расставим такой порядок выполнения действия над исходным выражением:

(3 2 + 1 × 3) − 15 + 5 = 12 − 15 + 5 = 2

Пример 13 . Найти значение выражения 2 × 5 3 + 5 × 2 3

Сначала возведем числа в степени, затем выполним умножение и сложим полученные результаты:

2 × 5 3 + 5 × 2 3 = 2 × 125 + 5 × 8 = 250 + 40 = 290

Тождественные преобразования степеней

Над степенями можно выполнять различные тождественные преобразования, тем самым упрощая их.

Допустим, потребовалось вычислить выражение (2 3) 2 . В данном примере два в третьей степени возводится во вторую степень. Иными словами, степень возводится в другую степень.

(2 3) 2 это произведение двух степеней, каждая из которых равна 2 3

При этом каждая из этих степеней является произведением трёх множителей, каждый из которых равен 2

Получили произведение 2 × 2 × 2 × 2 × 2 × 2 , которое равно 64. Значит значение выражения (2 3) 2 или равно 64

Этот пример можно значительно упростить. Для этого показатели выражения (2 3) 2 можно перемножить и записать это произведение над основанием 2

Получили 2 6 . Два в шестой степени это произведение шести множителей, каждый из которых равен 2. Это произведение равно 64

Данное свойство работает по причине того, что 2 3 это произведение 2 × 2 × 2 , которое в свою очередь повторяется два раза. Тогда получается, что основание 2 повторяется шесть раз. Отсюда можно записать, что 2 × 2 × 2 × 2 × 2 × 2 это 2 6

Вообще, для любого основания a с показателями m и n , выполняется следующее равенство:

(a n ) m = a n × m

Это тождественное преобразование называют возведением степени в степень . Его можно прочитать так: «При возведении степени в степень основание оставляют без изменений, а показатели перемножают» .

После перемножения показателей, получится другая степень, значение которой можно найти.

Пример 2 . Найти значение выражения (3 2) 2

В данном примере основанием является 3, а числа 2 и 2 являются показателями. Воспользуемся правилом возведения степени в степень. Основание оставим без изменений, а показатели перемножим:

Получили 3 4 . А число 3 в четвёртой степени есть 81

Рассмотрим остальные преобразования.

Умножение степеней

Чтобы перемножить степени, нужно по отдельности вычислить каждую степень, и полученные результаты перемножить.

Например, умножим 2 2 на 3 3 .

2 2 это число 4 , а 3 3 это число 27 . Перемножаем числа 4 и 27 , получаем 108

2 2 × 3 3 = 4 × 27 = 108

В этом примере основания степеней были разными. В случае, если основания будут одинаковыми, то можно записать одно основание, а в качестве показателя записать сумму показателей исходных степеней.

Например, умножим 2 2 на 2 3

В данном примере основания у степеней одинаковые. В этом случае можно записать одно основание 2 и в качестве показателя записать сумму показателей степеней 2 2 и 2 3 . Иными словами, о снование оставить без изменений, а показатели исходных степеней сложить. Выглядеть это будет так:

Получили 2 5 . Число 2 в пятой степени есть 32

Данное свойство работает по причине того, что 2 2 это произведение 2 × 2 , а 2 3 это произведение 2 × 2 × 2 . Тогда получается произведение из пяти одинаковых множителей, каждый из которых равен 2 . Это произведение представимо в виде 2 5

Вообще, для любого a и показателей m и n выполняется следующее равенство:

Это тождественное преобразование носит название основного свойства степени . Его можно прочитать так: «П ри перемножении степеней с одинаковыми основаниями, основание оставляют без изменений, а показатели складывают» .

Отметим, что данное преобразование можно применять при любом количестве степеней. Главное, чтобы основание было одинаковым.

Например, найдем значение выражения 2 1 × 2 2 × 2 3 . Основание 2

В некоторых задачах достаточным бывает выполнить соответствующее преобразование, не вычисляя итоговую степень. Это конечно же очень удобно, поскольку вычислять большие степени не так-то просто.

Пример 1 . Представить в виде степени выражение 5 8 × 25

В данной задаче нужно сделать так, чтобы вместо выражения 5 8 × 25 получилась одна степень.

Число 25 можно представить в виде 5 2 . Тогда получим следующее выражение:

В этом выражении можно применить основное свойство степени — основание 5 оставить без изменений, а показатели 8 и 2 сложить:

Запишем решение покороче:

Пример 2 . Представить в виде степени выражение 2 9 × 32

Число 32 можно представить в виде 2 5 . Тогда получим выражение 2 9 × 2 5 . Далее можно применить основание свойство степени — основание 2 оставить без изменений, а показатели 9 и 5 сложить. В результате получится следующее решение:

Пример 3 . Вычислите произведение 3 × 3 , используя основное свойство степени.

Все хорошо знают, что три умножить на три равно девять, но задача требует в ходе решения воспользоваться основным свойством степени. Как это сделать?

Вспоминаем, что если число дано без показателя, то показатель нужно считать равным единице. Стало быть сомножители 3 и 3 можно записать в виде 3 1 и 3 1

3 1 × 3 1

Теперь воспользуемся основным свойством степени. Основание 3 оставляем без изменений, а показатели 1 и 1 складываем:

3 1 × 3 1 = 3 2 = 9

Пример 4 . Вычислите произведение 2 × 2 × 3 2 × 3 3 , используя основное свойство степени.

Произведение 2 × 2 заменим на 2 1 × 2 1 , затем на 2 1 + 1 , а затем на 2 2 . Произведение 3 2 × 3 3 заменим на 3 2 + 3 , а затем на 3 5

Пример 5 . Выполнить умножение x × x

Это два одинаковых буквенных сомножителя с показателями 1. Для наглядности запишем эти показатели. Далее основание x оставим без изменений, а показатели сложим:

Находясь у доски, не следует записывать перемножение степеней с одинаковыми основаниями так подробно, как это сделано здесь. Такие вычисления нужно выполнять в уме. Подробная запись скорее всего будет раздражать учителя и он снизит за это оценку. Здесь же подробная запись дана, чтобы материал был максимально доступным для понимания.

Решение данного примера желательно записать так:

Пример 6 . Выполнить умножение x 2 × x

Показатель второго сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Пример 7 . Выполнить умножение y 3 y 2 y

Показатель третьего сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Пример 8 . Выполнить умножение aa 3 a 2 a 5

Показатель первого сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

Пример 9 . Представить степень 3 8 в виде произведения степеней с одинаковыми основаниями.

В данной задаче нужно составить произведение степеней, основания которых будут равны 3 , и сумма показателей которых будет равна 8 . Можно использовать любые показатели. Представим степень 3 8 в виде произведения степеней 3 5 и 3 3

В данном примере мы опять же опирались на основное свойство степени. Ведь выражение 3 5 × 3 3 можно записать как 3 5 + 3 , откуда 3 8 .

Конечно можно было представить степень 3 8 в виде произведения других степеней. Например, в виде 3 7 × 3 1 , поскольку это произведение тоже равно 3 8

Представление степени в виде произведения степеней с одинаковыми основаниями это по большей части творческая работа. Поэтому не нужно бояться экспериментировать.

Пример 10 . Представить степень x 12 в виде различных произведений степеней с основаниями x .

Воспользуемся основным свойство степени. Представим x 12 в виде произведений с основаниями x , и сумма показателей которых равна 12

Конструкции с суммами показателей были записаны для наглядности. Чаще всего их можно пропустить. Тогда получится компактное решение:

Возведение в степень произведения

Чтобы возвести в степень произведение, нужно возвести в указанную степень каждый множитель этого произведения и перемножить полученные результаты.

Например, возведём во вторую степень произведение 2 × 3 . Возьмём в скобки данное произведение и в качестве показателя укажем 2

Теперь возведём во вторую степень каждый множитель произведения 2 × 3 и перемножим полученные результаты:

Принцип работы данного правила основан на определении степени, которое было дано в самом начале.

Возвести произведение 2 × 3 во вторую степень означает повторить данное произведение два раза. А если повторить его два раза, то можно получить следующее:

2 × 3 × 2 × 3

От перестановки мест сомножителей произведение не меняется. Это позволяет сгруппировать одинаковые множители:

2 × 2 × 3 × 3

Повторяющиеся множители можно заменить на короткие записи — основания с показателями. Произведение 2 × 2 можно заменить на 2 2 , а произведение 3 × 3 можно заменить на 3 2 . Тогда выражение 2 × 2 × 3 × 3 обращается в выражение 2 2 × 3 2 .

Пусть ab исходное произведение. Чтобы возвести данное произведение в степень n , нужно по отдельности возвести множители a и b в указанную степень n

Данное свойство справедливо для любого количества множителей. Следующие выражения также справедливы:

Пример 2 . Найти значение выражения (2 × 3 × 4) 2

В данном примере нужно возвести во вторую степень произведение 2 × 3 × 4 . Чтобы сделать это, нужно возвести во вторую степень каждый множитель этого произведения и перемножить полученные результаты:

Пример 3 . Возвести в третью степень произведение a × b × c

Заключим в скобки данное произведение, и в качестве показателя укажем число 3

Пример 4 . Возвести в третью степень произведение 3xyz

Заключим в скобки данное произведение, и в качестве показателя укажем 3

(3xyz ) 3

Возведём в третью степень каждый множитель данного произведения:

(3xyz ) 3 = 3 3 x 3 y 3 z 3

Число 3 в третьей степени равно числу 27 . Остальное оставим без изменений:

(3xyz ) 3 = 3 3 x 3 y 3 z 3 = 27x 3 y 3 z 3

В некоторых примерах умножение степеней с одинаковыми показателями можно заменять на произведение оснований с одним показателем.

Например, вычислим значение выражения 5 2 × 3 2 . Возведем каждое число во вторую степень и перемножим полученные результаты:

5 2 × 3 2 = 25 × 9 = 225

Но можно не вычислять по отдельности каждую степень. Вместо этого, данное произведение степеней можно заменить на произведение с одним показателем (5 × 3) 2 . Далее вычислить значение в скобках и возвести полученный результат во вторую степень:

5 2 × 3 2 = (5 × 3) 2 = (15) 2 = 225

В данном случае опять же было использовано правило возведения в степень произведения. Ведь, если (a × b ) n = a n × b n , то a n × b n = (a × b) n . То есть левая и правая часть равенства поменялись местами.

Возведение степени в степень

Это преобразование мы рассматривали в качестве примера, когда пытались понять суть тождественных преобразований степеней.

При возведении степени в степень основание оставляют без изменений, а показатели перемножают:

(a n ) m = a n × m

К примеру, выражение (2 3) 2 является возведением степени в степень — два в третьей степени возводится во вторую степень. Чтобы найти значение этого выражения, основание можно оставить без изменений, а показатели перемножить:

(2 3) 2 = 2 3 × 2 = 2 6

(2 3) 2 = 2 3 × 2 = 2 6 = 64

Данное правило основано на предыдущих правилах: возведении в степень произведения и основного свойства степени.

Вернёмся к выражению (2 3) 2 . Выражение в скобках 2 3 представляет собой произведение из трёх одинаковых множителей, каждый из которых равен 2. Тогда в выражении (2 3) 2 степень, находящуюся внутри скобок можно заменить на произведение 2 × 2 × 2 .

(2 × 2 × 2) 2

А это есть возведение в степень произведения, которое мы изучили ранее. Напомним, что для возведения в степень произведения, нужно возвести в указанную степень каждый множитель данного произведения и полученные результаты перемножить:

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2

Теперь имеем дело с основным свойством степени. Основание оставляем без изменений, а показатели складываем:

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6

Как и раньше получили 2 6 . Значение этой степени равно 64

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6 = 64

В степень также может возводиться произведение, сомножители которого тоже являются степенями.

Например, найдём значение выражения (2 2 × 3 2) 3 . Здесь показатели каждого множителя нужно умножить на общий показатель 3 . Далее найти значение каждой степени и вычислить произведение:

(2 2 × 3 2) 3 = 2 2×3 × 3 2×3 = 2 6 × 3 6 = 64 × 729 = 46656

Примерно тоже самое происходит при возведении в степени произведения. Мы говорили, что при возведении в степень произведения, в указанную степень возводится каждый множитель этого произведения.

Например, чтобы возвести произведение 2 × 4 в третью степень, нужно записать следующее выражение:

Но ранее было сказано, что если число дано без показателя, то показатель надо считать равным единице. Получается, что множители произведения 2 × 4 изначально имеют показатели равные 1. Значит в третью степень возводилось выражение 2 1 × 4 1 . А это есть возведение степени в степень.

Перепишем решение с помощью правила возведения степени в степень. У нас должен получиться тот же результат:

Пример 2 . Найти значение выражения (3 3) 2

Основание оставляем без изменений, а показатели перемножаем:

Получили 3 6 . Число 3 в шестой степени есть число 729

Пример 3 xy

Пример 4 . Выполнить возведение в степень в выражении (abc )⁵

Возведём в пятую степень каждый множитель произведения:

Пример 5 ax ) 3

Возведём в третью степень каждый множитель произведения:

Поскольку в третью степень возводилось отрицательное число −2, оно было взято в скобки.

Пример 6 . Выполнить возведение в степень в выражении (10xy ) 2

Пример 7 . Выполнить возведение в степень в выражении (−5x ) 3

Пример 8 . Выполнить возведение в степень в выражении (−3y ) 4

Пример 9 . Выполнить возведение в степень в выражении (−2abx )⁴

Пример 10 . Упростите выражение x 5 × (x 2) 3

Степень x 5 пока оставим без изменений, а в выражении (x 2) 3 выполним возведение степени в степени:

x 5 × (x 2) 3 = x 5 × x 2 × 3 = x 5 × x 6

Теперь выполним умножение x 5 × x 6 . Для этого воспользуемся основным свойством степени — основание x оставим без изменений, а показатели сложим:

x 5 × (x 2) 3 = x 5 × x 2× 3 = x 5 × x 6 = x 5 + 6 = x 11

Пример 9 . Найти значение выражения 4 3 × 2 2 , используя основное свойство степени.

Основное свойство степени можно использовать в случае, если основания исходных степеней одинаковы. В данном примере основания разные, поэтому для начала исходное выражение нужно немного видоизменить, а именно сделать так, чтобы основания степеней стали одинаковыми.

Посмотрим внимательно на степень 4 3 . Основание у этой степени есть число 4, которое можно представить в виде 2 2 . Тогда исходное выражение примет вид (2 2) 3 × 2 2 . Выполнив возведение степени в степень в выражении (2 2) 3 , мы получим 2 6 . Тогда исходное выражение примет вид 2 6 × 2 2 , вычислить которое можно, используя основное свойство степени.

Запишем решение данного примера:

Деление степеней

Чтобы выполнить деление степеней, нужно найти значение каждой степени, затем выполнить деление обыкновенных чисел.

Например, разделим 4 3 на 2 2 .

Вычислим 4 3 , получим 64 . Вычислим 2 2 , получим 4. Теперь разделим 64 на 4, получим 16

Если при делении степеней основания окажутся одинаковыми, то основание можно оставить без изменений, а из показателя степени делимого вычесть показатель степени делителя.

Например, найдем значение выражения 2 3: 2 2

Основание 2 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Значит, значение выражения 2 3: 2 2 равно 2 .

Данное свойство основано на умножении степеней с одинаковыми основаниями, или как мы привыкли говорить на основном свойстве степени.

Вернемся к предыдущему примеру 2 3: 2 2 . Здесь делимое это 2 3 , а делитель 2 2 .

Разделить одно число на другое означает найти такое число, которое при умножении на делитель даст в результате делимое.

В нашем случае, разделить 2 3 на 2 2 означает найти такую степень, которая при умножении на делитель 2 2 даст в результате 2 3 . А какую степень можно умножить на 2 2 , чтобы получить 2 3 ? Очевидно, что только степень 2 1 . Из основного свойства степени имеем:

Убедиться, что значение выражения 2 3: 2 2 равно 2 1 можно непосредственно вычислив само выражение 2 3: 2 2 . Для этого сначала найдём значение степени 2 3 , получим 8 . Затем найдём значение степени 2 2 , получим 4 . Разделим 8 на 4, получим 2 или 2 1 , поскольку 2 = 2 1 .

2 3: 2 2 = 8: 4 = 2

Таким образом, при делении степеней с одинаковыми основаниями выполняется следующее равенство:

Может случиться и так, что одинаковыми могут оказаться не только основания, но и показатели. В этом случае в ответе получится единица.

Например, найдём значение выражения 2 2: 2 2 . Вычислим значение каждой степени и выполним деление получившихся чисел:

При решении примера 2 2: 2 2 также можно применить правило деления степеней с одинаковыми основаниями. В результате получается число в нулевой степени, поскольку разность показателей степеней 2 2 и 2 2 равна нулю:

Почему число 2 в нулевой степени равно единице мы выяснили выше. Если вычислить 2 2: 2 2 обычным методом, не используя правило деления степеней, получится единица.

Пример 2 . Найти значение выражения 4 12: 4 10

4 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

4 12: 4 10 = 4 12 − 10 = 4 2 = 16

Пример 3 . Представить частное x 3: x в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя. Показатель делителя равен единице. Для наглядности запишем его:

Пример 4 . Представить частное x 3: x 2 в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x

Деление степеней можно записывать в виде дроби. Так, предыдущий пример можно записать следующим образом:

Числитель и знаменатель дроби разрешается записывать в развёрнутом виде, а именно в виде произведений одинаковых множителей. Степень x 3 можно записать как x × x × x , а степень x 2 как x × x . Тогда конструкцию x 3 − 2 можно будет пропустить и воспользоваться сокращением дроби. В числителе и в знаменателе можно будет сократить по два множителя x . В результате останется один множитель x

Или ещё короче:

Также, полезно уметь быстро сокращать дроби, состоящие из степеней. Например, дробь можно сократить на x 2 . Чтобы сократить дробь на x 2 нужно числитель и знаменатель дроби разделить на x 2

Деление степеней подробно можно не расписывать. Приведённое сокращение можно выполнить короче:

Или ещё короче:

Пример 5 . Выполнить деление x 12 : x 3

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Запишем решение при помощи сокращения дроби. Деление степеней x 12 : x 3 запишем в виде . Далее сократим данную дробь на x 3 .

Пример 6 . Найти значение выражения

В числителе выполним умножение степеней с одинаковыми основаниями:

Теперь применяем правило деления степеней с одинаковыми основаниями. Основание 7 оставляем без изменений, а из показателя степени делимого вычтем показатель степени делителя:

Завершаем пример, вычислив степень 7 2

Пример 7 . Найти значение выражения

Выполним в числителе возведение степени в степень. Сделать это нужно с выражением (2 3) 4

Теперь выполним в числителе умножение степеней с одинаковыми основаниями.

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или:
2a 4 — (-6a 4) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные .

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 .
(a 2 — y 2)⋅(a 2 + y 2) = a 4 — y 4 .
(a 4 — y 4)⋅(a 4 + y 4) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Запись a 5 , делённого на a 3 , выглядит как $\frac $. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются. .

Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac = y$.

И a n+1:a = a n+1-1 = a n . То есть $\frac = a^n$.

Или:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac: \frac = \frac .\frac = \frac = \frac $.

h 2:h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac = h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac $ Ответ: $\frac $.

2. Уменьшите показатели степеней в $\frac $. Ответ: $\frac $ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

Свойства степени

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » - любое число, а « m », « n » - любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
Пример. Решить уравнение. Используем свойство частного степеней.
3 8: t = 3 4

Ответ: t = 3 4 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

Пример. Упростить выражение.
4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

Пример. Найти значение выражения, используя свойства степени.

2 11 − 5 = 2 6 = 64

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

Свойство № 3
Возведение степени в степень

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(a n) m = a n · m , где « a » - любое число, а « m », « n » - любые натуральные числа.

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Как умножать степени

Как умножать степени? Какие степени можно перемножить, а какие - нет? Как число умножить на степень?

В алгебре найти произведение степеней можно в двух случаях:

1) если степени имеют одинаковые основания;

2) если степени имеют одинаковые показатели.

При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели - сложить:

При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

Рассмотрим, как умножать степени, на конкретных примерах.

Единицу в показателе степени не пишут, но при умножении степеней - учитывают:

При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

В выражениях возведение в степень выполняется в первую очередь.

Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом - умножение:

Умножение степеней с одинаковыми основаниями

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы изучим умножение степеней с одинаковыми основаниями. Вначале вспомним определение степени и сформулируем теорему о справедливости равенства . Затем приведем примеры ее применения на конкретных числах и докажем ее. Также мы применим теорему для решения различных задач.

Тема: Степень с натуральным показателем и ее свойства

Урок: Умножение степеней с одинаковыми основаниями (формула )

1. Основные определения

Основные определения:

n — показатель степени,

n -ая степень числа.

2. Формулировка теоремы 1

Теорема 1. Для любого числа а и любых натуральных n и k справедливо равенство:

По-иному: если а – любое число; n и k натуральные числа, то:

Отсюда правило 1:

3. Разъясняющие задачи

Вывод: частные случаи подтвердили правильность теоремы №1. Докажем ее в общем случае, то есть для любого а и любых натуральных n и k.

4. Доказательство теоремы 1

Дано число а – любое; числа n и k – натуральные. Доказать:

Доказательство основано на определении степени.

5. Решение примеров с помощью теоремы 1

Пример 1: Представьте в виде степени.

Для решения следующих примеров воспользуемся теоремой 1.

ж)

6. Обобщение теоремы 1

Здесь использовано обобщение:

7. Решение примеров с помощью обобщения теоремы 1

8. Решение различных задач с помощью теоремы 1

Пример 2: Вычислите (можно использовать таблицу основных степеней).

а) (по таблице)

б)

Пример 3: Запишите в виде степени с основанием 2.

а)

Пример 4: Определите знак числа:

, а – отрицательное, так как показатель степени при -13 нечетный.

Пример 5: Замените (·) степенью числа с основанием r:

Имеем , то есть .

9. Подведение итогов

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

1. Школьный помощник (Источник).

1. Представьте в виде степени:

а) б) в) г) д)

3. Запишите в виде степени с основанием 2:

4. Определите знак числа:

а)

5. Замените (·) степенью числа с основанием r:

а) r 4 · (·) = r 15 ; б) (·) · r 5 = r 6

Умножение и деление степеней с одинаковыми показателями

На этом уроке мы изучим умножение степеней с одинаковыми показателями. Сначала вспомним основные определения и теоремы об умножении и делении степеней с одинаковыми основаниями и возведении степень в степень. Затем сформулируем и докажем теоремы об умножении и делении степеней с одинаковыми показателями. А затем с их помощью решим ряд типичных задач.

Напоминание основных определений и теорем

Здесь a — основание степени,

n -ая степень числа.

Теорема 1. Для любого числа а и любых натуральных n иk справедливо равенство:

При умножении степеней с одинаковыми основаниями показатели складываются, основание остается неизменным.

Теорема 2. Для любого числа а и любых натуральных n и k, таких, что n > k справедливо равенство:

При делении степеней с одинаковыми основаниями показатели отнимаются, а основание остается неизменным.

Теорема 3. Для любого числа а и любых натуральных n иk справедливо равенство:

Все перечисленные теоремы были о степенях с одинаковыми основаниями , на этом уроке будут рассмотрены степени с одинаковыми показателями .

Примеры на умножение степеней с одинаковыми показателями

Рассмотрим следующие примеры:

Распишем выражения по определению степени.

Вывод: из примеров можно заметить, что , но это еще нужно доказать. Сформулируем теорему и докажем ее в общем случае, то есть для любых а и b и любого натурального n.

Формулировка и доказательство теоремы 4

Для любых чисел а и b и любого натурального n справедливо равенство:

Доказательство теоремы 4.

По определению степени:

Итак, мы доказали, что .

Чтобы перемножить степени с одинаковыми показателями, достаточно перемножить основания, а показатель степени оставить неизменным.

Формулировка и доказательство теоремы 5

Сформулируем теорему для деления степеней с одинаковыми показателями.

Для любого числа а и b () и любого натурального n справедливо равенство:

Доказательство теоремы 5.

Распишем и по определению степени:

Формулировка теорем словами

Итак, мы доказали, что .

Чтобы разделить друг на друга степени с одинаковыми показателями, достаточно разделить одно основание на другое, а показатель степени оставить неизменным.

Решение типичных задач с помощью теоремы 4

Пример 1: Представить в виде произведения степеней.

Для решения следующих примеров воспользуемся теоремой 4.

Для решения следующего примера вспомним формулы:

Обобщение теоремы 4

Обобщение теоремы 4:

Решение примеров с помощью обобщенной теоремы 4

Продолжение решения типичных задач

Пример 2: Запишите в виде степени произведения.

Пример 3: Запишите в виде степени с показателем 2.

Примеры на вычисление

Пример 4: Вычислить самым рациональным способом.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

2. Школьный помощник (Источник).

1. Представить в виде произведения степеней:

а) ; б) ; в) ; г) ;

2. Запишите в виде степени произведения:

3. Запишите в виде степени с показателем 2:

4. Вычислить самым рациональным способом.

Урок математики по теме «Умножение и деление степеней»

Разделы: Математика

Педагогическая цель :

  • ученик научится различать свойства умножения и деления степеней с натуральным показателем; применять эти свойства в случае с одинаковыми основаниями;
  • ученик получит возможность уметь выполнять преобразования степеней с разными основаниями и уметь выполнять преобразования в комбинированных заданиях.
  • Задачи :

  • организовать работу учащихся посредством повторения ранее изученного материала;
  • обеспечить уровень воспроизведения посредством выполнения упражнений различного типа;
  • организовать проверку по самооценке учащихся посредством тестирования.
  • Деятельностные единицы учения: определение степени с натуральным показателем; компоненты степени; определение частного; сочетательный закон умножения.

    I. Организация демонстрации овладение учащимися имеющимися знаниями. (шаг 1)

    а) Актуализация знаний:

    2) Сформулировать определение степени с натуральным показателем.

    a n =a a a a … а (n раз)

    b k =b b b b a… b (k раз) Обосновать ответ.

    II. Организация самооценивания обучаемого степенью владения актуальным опытом. (шаг 2)

    Тест для самопроверки: (индивидуальная работа в двух вариантах.)

    А1) Представьте произведение 7 7 7 7 x x x в виде степени:

    А2) Представить в виде произведения степень (-3) 3 х 2

    A3) Вычислите: -2 3 2 + 4 5 3

    Количество заданий в тесте я подбираю в соответствии с подготовкой уровня класса.

    К тесту даю ключ для самопроверки. Критерии: зачёт – не зачёт.

    III. Учебно-практическая задача (шаг 3) + шаг 4. (сформулируют свойства сами ученики)

  • вычислите: 2 2 2 3 = ? 3 3 3 2 3 =?
  • Упростите: а 2 а 20 = ? b 30 b 10 b 15 = ?
  • В ходе решения задачи 1) и 2) учащиеся предлагают решение, а я, как учитель, организую класс на нахождение способа для упрощения степеней при умножении с одинаковыми основаниями.

    Учитель: придумать способ для упрощения степеней при умножении с одинаковыми основаниями.

    На кластере появляется запись:

    Формулируется тема урока. Умножение степеней.

    Учитель: придумайте правило деления степеней с одинаковыми основаниями.

    Рассуждения: каким действием проверяется деление? а 5: а 3 = ? что а 2 а 3 = а 5

    Возвращаюсь к схеме – кластер и дополняем запись – ..при делении вычитаем и дописываем тему урока. …и деление степеней.

    IV. Сообщение учащимся пределов познания (как минимум и как максимум).

    Учитель: задачей минимума на сегодняшний урок является научиться применять свойства умножения и деления степеней с одинаковыми основаниями, а максимума: применять умножение и деление совместно.

    На доске записываем: а m а n = а m+n ; а m: а n = а m-n

    V. Организация изучения нового материала. (шаг 5)

    а) По учебнику: №403 (а, в, д) задания с разными формулировками

    №404 (а, д, е) самостоятельная работа, затем организую взаимопроверку, даю ключи.

    б) При каком значении m справедливо равенство? а 16 а m = а 32 ; х h х 14 = х 28 ; х 8 (*) = х 14

    Задание: придумать аналогичные примеры для деления.

    в) № 417(а), №418 (а) Ловушки для учеников : х 3 х n = х 3n ; 3 4 3 2 = 9 6 ; а 16: а 8 = а 2 .

    VI. Обобщение изученного, проведение диагностической работы (что побуждает учеников, а не учителя изучать данную тему)(шаг 6)

    Диагностическая работа.

    Тест (ключи поместить на обратной стороне теста).

    Варианты заданий: представьте в виде степени частное х 15: х 3 ; представьте в виде степени произведение (-4) 2 (-4) 5 (-4) 7 ; при каком m справедливо равенство а 16 а m = а 32 ; найдите значение выражения h 0: h 2 при h =0,2; вычислите значение выражения (5 2 5 0) : 5 2 .

    Итог урока. Рефлексия. Делю класс на две группы.

    Найдите аргументы I группа: в пользу знания свойств степени, а II группа – аргументы, которые будут говорить о том, что можно обойтись без свойств. Все ответы выслушиваем, делаем выводы. На последующих уроках можно предложить статистические данные и назвать рубрику «В голове не укладывается!»

  • Средний человек съедает 32 10 2 кг огурцов в течение жизни.
  • Оса способна совершить беспосадочный перелёт на 3,2 10 2 км.
  • Когда стекло трескается, трещина распространяется со скоростью около 5 10 3 км/ч.
  • Лягушка съедает за свою жизнь более 3 тонн комаров. Используя степень, запишите в кг.
  • Наиболее плодовитой считается океанская рыба – луна (Моlа mola), которая откладывает за один нерест до 300000000 икринок диаметром около 1,3 мм. Запишите это число, используя степень.
  • VII. Домашнее задание.

    Историческая справка. Какие числа называют числами Ферма.

    П.19. №403, №408, №417

    Используемая литература:

  • Учебник «Алгебра-7», авторы Ю.Н. Макарычев, Н.Г. Миндюк и др.
  • Дидактический материал для 7 класса, Л.В. Кузнецова, Л.И. Звавич, С.Б. Суворова.
  • Энциклопедия по математике.
  • Журнал «Квант».
  • Свойства степеней, формулировки, доказательства, примеры.

    После того как определена степень числа, логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

    Навигация по странице.

    Свойства степеней с натуральными показателями

    По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  • основное свойство степени a m ·a n =a m+n , его обобщение a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k ;
  • свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  • свойство степени произведения (a·b) n =a n ·b n , его расширение (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n ;
  • свойство частного в натуральной степени (a:b) n =a n:b n ;
  • возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  • сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a 2·m >0 , если a 2·m−1 n ;
    • если m и n такие натуральные числа, что m>n , то при 0m n , а при a>0 справедливо неравенство a m >a n .
    • Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

      Теперь рассмотрим каждое из них подробно.

      Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

      Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

      Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень, имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 — верное, и оно подтверждает основное свойство степени.

      Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

      Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

      Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

      Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n), либо отрицательным числом (что происходит при m m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из связи умножения с делением следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

      Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

      Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

      Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

      Приведем пример: .

      Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

      Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

      Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

      Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

      Запишем это свойство на примере конкретных чисел: .

      Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

      Например, (5 2) 3 =5 2·3 =5 6 .

      Доказательством свойства степени в степени является следующая цепочка равенств: .

      Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

      Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

      Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

      Для начала обоснуем, что a n >0 при любом a>0 .

      Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

      Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

      Переходим к отрицательным основаниям степени.

      Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m — натуральное. Тогда . По правилу умножения отрицательных чисел каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

      Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 17 n n представляет собой произведение левых и правых частей n верных неравенств aсвойств неравенств справедливо и доказываемое неравенство вида a n n . Например, в силу этого свойства справедливы неравенства 3 7 7 и .

      Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

      Докажем, что при m>n и 0m n . Для этого запишем разность a m −a n и сравним ее с нулем. Записанная разность после вынесения a n за скобки примет вид a n ·(a m−n −1) . Полученное произведение отрицательно как произведение положительного числа a n и отрицательного числа a m−n −1 (a n положительна как натуральная степень положительного числа, а разность a m−n −1 отрицательна, так как m−n>0 в силу исходного условия m>n , откуда следует, что при 0m−n меньше единицы). Следовательно, a m −a n m n , что и требовалось доказать. Для примера приведем верное неравенство .

      Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

      Свойства степеней с целыми показателями

      Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

      Степень с целым отрицательным показателем, а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

      Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

    • a m ·a n =a m+n ;
    • a m:a n =a m−n ;
    • (a·b) n =a n ·b n ;
    • (a:b) n =a n:b n ;
    • (a m) n =a m·n ;
    • если n – целое положительное число, a и b – положительные числа, причем an n и a −n >b −n ;
    • если m и n – целые числа, причем m>n , то при 0m n , а при a>1 выполняется неравенство a m >a n .
    • При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

      Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

      Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

      Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

      Аналогично .

      И .

      По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

      В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Запишем и преобразуем разность левой и правой частей этого неравенства: . Так как по условию an n , следовательно, b n −a n >0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

      Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

      Свойства степеней с рациональными показателями

      Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

    1. свойство произведения степеней с одинаковыми основаниями при a>0 , а если и , то при a≥0 ;
    2. свойство частного степеней с одинаковыми основаниями при a>0 ;
    3. свойство произведения в дробной степени при a>0 и b>0 , а если и , то при a≥0 и (или) b≥0 ;
    4. свойство частного в дробной степени при a>0 и b>0 , а если , то при a≥0 и b>0 ;
    5. свойство степени в степени при a>0 , а если и , то при a≥0 ;
    6. свойство сравнения степеней с равными рациональными показателями: для любых положительных чисел a и b , a0 справедливо неравенство a p p , а при p p >b p ;
    7. свойство сравнения степеней с рациональными показателями и равными основаниями: для рациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q .
    8. Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на свойствах арифметического корня n-ой степени и на свойствах степени с целым показателем. Приведем доказательства.

      По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

      Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

      По схожим принципам доказываются и остальные равенства:

      Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a0 справедливо неравенство a p p , а при p p >b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p 0 в этом случае будут эквивалентны условия m 0 соответственно. При m>0 и am m . Из этого неравенства по свойству корней имеем , а так как a и b – положительные числа, то на основе определения степени с дробным показателем полученное неравенство можно переписать как , то есть, a p p .

      Аналогично, при m m >b m , откуда , то есть, и a p >b p .

      Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n — натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из правила сравнения обыкновенных дробей с одинаковыми знаменателями. Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 0m 1 m 2 , а при a>1 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 0p q , а при a>0 – неравенство a p >a q .

      Свойства степеней с иррациональными показателями

      Из того, как определяется степень с иррациональным показателем, можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

      1. a p ·a q =a p+q ;
      2. a p:a q =a p−q ;
      3. (a·b) p =a p ·b p ;
      4. (a:b) p =a p:b p ;
      5. (a p) q =a p·q ;
      6. для любых положительных чисел a и b , a0 справедливо неравенство a p p , а при p p >b p ;
      7. для иррациональных чисел p и q , p>q при 0p q , а при a>0 – неравенство a p >a q .
      8. Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

    • Алгебра – 10 класс. Тригонометрические уравнения Урок и презентация на тему: "Решение простейших тригонометрических уравнений" Дополнительные материалы Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы […]
    • Открыт конкурс на позицию «ПРОДАВЕЦ - КОНСУЛЬТАНТ»: Обязанности: продажа мобильных телефонов и аксессуаров для мобильной связи сервисное обслуживание абонентов Билайн, Теле2, МТС подключение тарифных планов и услуг Билайн и Теле2, МТС консультирование […]
    • Параллелепипед формулы Параллелепипед – это многогранник с 6 гранями, каждая из которых является параллелограммом. Прямоугольный параллелепипед – это параллелепипед, каждая грань которого является прямоугольником. Любой параллелепипед характеризуется 3 […]
    • Общество защиты прав потребителя астана Для того, что бы получить pin-код для доступа к данному документу на нашем сайте, отправьте sms-сообщение с текстом zan на номер Абоненты GSM-операторов (Activ, Kcell, Beeline, NEO, Tele2) отправив SMS на номер, […]
    • ПРАВОПИСАНИЕ Н И НН В РАЗНЫХ ЧАСТЯХ РЕЧИ С.Г.ЗЕЛИНСКАЯ ДИДАКТИЧЕСКИЙ МАТЕРИАЛ Теоретическая зарядка 1. Когда в прилагательных пишется нн? 2. Назовите исключения из этих правил. 3. Как отличить отглагольное прилагательное с суффиксом -н- от причастия с […]
    • Принять закон о Родовых поместьях Принять федеральный закон о безвозмездном выделении каждому желающему гражданину Российской Федерации или семье граждан участка земли для обустройства на нем Родового Поместья на следующих условиях: 1. Участок выделяется для […]
    • ИНСПЕКЦИЯ ГОСТЕХНАДЗОРА БРЯНСКОЙ ОБЛАСТИ Квитанция об оплате госпошлины(Скачать-12,2 kb) Заявления на регистрацию для физ.лиц(Скачать-12 kb) Заявления на регистрацию для юр.лиц(Скачать-11,4 kb) 1. При регистрации новой машины: 1.заявление 2.паспорт […]
    • Давненько мы не играли турниров 1х1. И пора бы наверное возобновить эту традицию. Пока мы не можем организовать отдельный ладдер и турниры для 1х1 игроков, предлагаем использовать ваши командные профайлы на сайте. Очки за игры в матчах снимать или добавлять […]
  • В предыдущей статье мы рассказали, что из себя представляют одночлены. В этом материале разберем, как решать примеры и задачи, в которых они применяются. Здесь будут рассмотрены такие действия, как вычитание, сложение, умножение, деление одночленов и возведение их в степень с натуральным показателем. Мы покажем, как определяются такие операции, обозначим основные правила их выполнения и то, что должно получится в результате. Все теоретические положения, как обычно, будут проиллюстрированы примерами задач с описаниями решений.

    Удобнее всего работать со стандартной записью одночленов, поэтому все выражения, которые будут использованы в статье, мы приводим в стандартном виде. Если изначально они заданы иначе, рекомендуется сначала привести их к общепринятой форме.

    Правила сложения и вычитания одночленов

    Наиболее простые действия, которые можно проводить с одночленами – это вычитание и сложение. В общем случае результатом этих действий будет являться многочлен (одночлен возможен в некоторых частных случаях).

    Когда мы складываем или вычитаем одночлены, сначала записываем в общепринятой форме соответствующую сумму и разность, после чего упрощаем получившееся выражение. Если есть подобные слагаемые, их нужно привести, скобки – раскрыть. Поясним на примере.

    Пример 1

    Условие: выполните сложение одночленов − 3 · x и 2 , 72 · x 3 · y 5 · z .

    Решение

    Запишем сумму исходных выражений. Добавим скобки и поставим между ними плюс. У нас получится следующее:

    (− 3 · x) + (2 , 72 · x 3 · y 5 · z)

    Когда мы выполним раскрытие скобок, получится - 3 · x + 2 , 72 · x 3 · y 5 · z . Это многочлен, записанный в стандартной форме, который и будет результатом сложения данных одночленов.

    Ответ: (− 3 · x) + (2 , 72 · x 3 · y 5 · z) = − 3 · x + 2 , 72 · x 3 · y 5 · z .

    Если у нас задано три, четыре и больше слагаемых, мы осуществляем это действие точно так же.

    Пример 2

    Условие: проведите в правильном порядке указанные действия с многочленами

    3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c

    Решение

    Начнем с раскрытия скобок.

    3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c

    Мы видим, что полученное выражение можно упростить путем приведения подобных слагаемых:

    3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = = (3 · a 2 + a 2 - 7 · a 2) + 4 · a · c - 2 2 3 · a · c + 4 9 = = - 3 · a 2 + 1 1 3 · a · c + 4 9

    У нас получился многочлен, который и будет результатом данного действия.

    Ответ: 3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = - 3 · a 2 + 1 1 3 · a · c + 4 9

    В принципе, мы можем выполнить сложение и вычитание двух одночленов с некоторыми ограничениями так, чтобы получить в итоге одночлен. Для этого нужно соблюсти некоторые условия, касающиеся слагаемых и вычитаемых одночленов. О том, как это делается, мы расскажем в отдельной статье.

    Правила умножения одночленов

    Действие умножения не налагает никаких ограничений на множители. Умножаемые одночлены не должны соответствовать никаким дополнительным условиям, чтобы в результате получится одночлен.

    Чтобы выполнить умножение одночленов, нужно выполнить следующие шаги:

    1. Правильно записать произведение.
    2. Раскрыть скобки в полученном выражении.
    3. Сгруппировать по возможности множители с одинаковыми переменными и числовые множители отдельно.
    4. Выполнить необходимые действия с числами и применить к оставшимся множителям свойство умножения степеней с одинаковыми основаниями.

    Посмотрим, как это делается на практике.

    Пример 3

    Условие: выполните умножение одночленов 2 · x 4 · y · z и - 7 16 · t 2 · x 2 · z 11 .

    Решение

    Начнем с составления произведения.

    Раскрываем в нем скобки и получаем следующее:

    2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11

    2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11

    Все, что нам осталось сделать – это умножить числа в первых скобках и применить свойство степеней для вторых. В итоге получим следующее:

    2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11 = - 7 8 · t 2 · x 4 + 2 · y · z 3 + 11 = = - 7 8 · t 2 · x 6 · y · z 14

    Ответ: 2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11 = - 7 8 · t 2 · x 6 · y · z 14 .

    Если у нас в условии стоят три многочлена и больше, мы умножаем их по точно такому же алгоритму. Более подробно вопрос умножения одночленов мы рассмотрим в рамках отдельного материала.

    Правила возведения одночлена в степень

    Мы знаем, что степенью с натуральным показателем называют произведение некоторого числа одинаковых множителей. На их количество указывает число в показателе. Согласно этому определению, возведение одночлена в степень равнозначно умножению указанного числа одинаковых одночленов. Посмотрим, как это делается.

    Пример 4

    Условие: выполните возведение одночлена − 2 · a · b 4 в степень 3 .

    Решение

    Мы можем заменить возведение в степень на умножение 3 -х одночленов − 2 · a · b 4 . Запишем и получим нужный ответ:

    (− 2 · a · b 4) 3 = (− 2 · a · b 4) · (− 2 · a · b 4) · (− 2 · a · b 4) = = ((− 2) · (− 2) · (− 2)) · (a · a · a) · (b 4 · b 4 · b 4) = − 8 · a 3 · b 12

    Ответ: (− 2 · a · b 4) 3 = − 8 · a 3 · b 12 .

    А как быть в том случае, когда степень имеет большой показатель? Записывать большое количество множителей неудобно. Тогда для решения такой задачи нам надо применить свойства степени, а именно свойство степени произведения и свойство степени в степени.

    Решим задачу, которую мы привели выше, указанным способом.

    Пример 5

    Условие: выполните возведение − 2 · a · b 4 в третью степень.

    Решение

    Зная свойство степени в степени, мы можем перейти к выражению следующего вида:

    (− 2 · a · b 4) 3 = (− 2) 3 · a 3 · (b 4) 3 .

    После этого мы возводим в степень - 2 и применяем свойство степени в степени:

    (− 2) 3 · (a) 3 · (b 4) 3 = − 8 · a 3 · b 4 · 3 = − 8 · a 3 · b 12 .

    Ответ: − 2 · a · b 4 = − 8 · a 3 · b 12 .

    Возведению одночлена в степень мы также посвятили отдельную статью.

    Правила деления одночленов

    Последнее действие с одночленами, которое мы разберем в данном материале, – деление одночлена на одночлен. В результате мы должны получить рациональную (алгебраическую) дробь (в некоторых случаях возможно получение одночлена). Сразу уточним, что деление на нулевой одночлен не определяется, поскольку не определяется деление на 0.

    Для выполнения деления нам нужно записать указанные одночлены в форме дроби и сократить ее, если есть такая возможность.

    Пример 6

    Условие: выполните деление одночлена − 9 · x 4 · y 3 · z 7 на − 6 · p 3 · t 5 · x 2 · y 2 .

    Решение

    Начнем с записи одночленов в форме дроби.

    9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2

    Эту дробь можно сократить. После выполнения этого действия получим:

    3 · x 2 · y · z 7 2 · p 3 · t 5

    Ответ: - 9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2 = 3 · x 2 · y · z 7 2 · p 3 · t 5 .

    Условия, при которых в результате деления одночленов мы получим одночлен, приводятся в отдельной статье.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Как умножать степени? Какие степени можно перемножить, а какие - нет? Как число умножить на степень?

    В алгебре найти произведение степеней можно в двух случаях:

    1) если степени имеют одинаковые основания;

    2) если степени имеют одинаковые показатели.

    При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели - сложить:

    При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

    Рассмотрим, как умножать степени, на конкретных примерах.

    Единицу в показателе степени не пишут, но при умножении степеней - учитывают:

    При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

    В выражениях возведение в степень выполняется в первую очередь.

    Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом - умножение:

    www.algebraclass.ru

    Сложение, вычитание, умножение, и деление степеней

    Сложение и вычитание степеней

    Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

    Так, сумма a 3 и b 2 есть a 3 + b 2 .
    Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

    Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

    Так, сумма 2a 2 и 3a 2 равна 5a 2 .

    Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

    Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

    Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

    Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

    Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

    Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

    Или:
    2a 4 — (-6a 4) = 8a 4
    3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
    5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

    Умножение степеней

    Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

    Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

    Или:
    x -3 ⋅ a m = a m x -3
    3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
    a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

    Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
    Выражение примет вид: a 5 b 5 y 3 .

    Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

    Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

    Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

    Так, a n .a m = a m+n .

    Для a n , a берётся как множитель столько раз, сколько равна степень n;

    И a m , берётся как множитель столько раз, сколько равна степень m;

    Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

    Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

    Или:
    4a n ⋅ 2a n = 8a 2n
    b 2 y 3 ⋅ b 4 y = b 6 y 4
    (b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

    Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
    Ответ: x 4 — y 4 .
    Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

    Это правило справедливо и для чисел, показатели степени которых — отрицательные .

    1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

    2. y -n .y -m = y -n-m .

    3. a -n .a m = a m-n .

    Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть

    Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

    Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

    Так, (a — y).(a + y) = a 2 — y 2 .
    (a 2 — y 2)⋅(a 2 + y 2) = a 4 — y 4 .
    (a 4 — y 4)⋅(a 4 + y 4) = a 8 — y 8 .

    Деление степеней

    Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

    Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

    Запись a 5 , делённого на a 3 , выглядит как $\frac $. Но это равно a 2 . В ряде чисел
    a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
    любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

    При делении степеней с одинаковым основанием их показатели вычитаются. .

    Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac = y$.

    И a n+1:a = a n+1-1 = a n . То есть $\frac = a^n$.

    Или:
    y 2m: y m = y m
    8a n+m: 4a m = 2a n
    12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

    Правило также справедливо и для чисел с отрицательными значениями степеней.
    Результат деления a -5 на a -3 , равен a -2 .
    Также, $\frac: \frac = \frac .\frac = \frac = \frac $.

    h 2:h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac = h^3$

    Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

    Примеры решения примеров с дробями, содержащими числа со степенями

    1. Уменьшите показатели степеней в $\frac $ Ответ: $\frac $.

    2. Уменьшите показатели степеней в $\frac $. Ответ: $\frac $ или 2x.

    3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
    a 2 .a -4 есть a -2 первый числитель.
    a 3 .a -3 есть a 0 = 1, второй числитель.
    a 3 .a -4 есть a -1 , общий числитель.
    После упрощения: a -2 /a -1 и 1/a -1 .

    4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
    Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

    5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

    6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

    7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

    8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

    Свойства степени

    Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

    Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

    Свойство № 1
    Произведение степеней

    При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

    a m · a n = a m + n , где « a » - любое число, а « m », « n » - любые натуральные числа.

    Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

    11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
    Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    Ответ: t = 3 4 = 81

    Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

      Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

    Пример. Найти значение выражения, используя свойства степени.

    2 11 − 5 = 2 6 = 64

    Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

    Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

    Свойство № 3
    Возведение степени в степень

    При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

    (a n) m = a n · m , где « a » - любое число, а « m », « n » - любые натуральные числа.


    Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

    (a n · b n)= (a · b) n

    То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1
  • В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

    Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

    Пример возведения в степень десятичной дроби.

    4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

    Свойства 5
    Степень частного (дроби)

    Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

    (a: b) n = a n: b n , где « a », « b » - любые рациональные числа, b ≠ 0, n - любое натуральное число.

  • Пример. Представить выражение в виде частного степеней.
    (5: 3) 12 = 5 12: 3 12
  • Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    Степени и корни

    Операции со степенями и корнями. Степень с отрицательным ,

    нулевым и дробным показателем. О выражениях, не имеющих смысла.

    Операции со степенями.

    1. При умножении степеней с одинаковым основанием их показатели складываются:

    a m · a n = a m + n .

    2. При делении степеней с одинаковым основанием их показатели вычитаются .

    3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

    4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

    (a / b ) n = a n / b n .

    5. При возведении степени в степень их показатели перемножаются:

    Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

    П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

    Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

    1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

    2. Корень из отношения равен отношению корней делимого и делителя:

    3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

    4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

    5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


    Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

    Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

    Т еперь формула a m : a n = a m — n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

    П р и м е р. a 4: a 7 = a 4 — 7 = a — 3 .

    Если мы хотим, чтобы формула a m : a n = a m n была справедлива при m = n , нам необходимо определение нулевой степени.

    Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

    П р и м е р ы. 2 0 = 1, ( 5) 0 = 1, ( 3 / 5) 0 = 1.

    Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а:

    О выражениях, не имеющих смысла. Есть несколько таких выражений.

    где a ≠ 0 , не существует.

    В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x , т.e. a = 0, что противоречит условию: a ≠ 0

    любое число.

    В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

    0 0 — любое число.

    Р е ш е н и е. Рассмотрим три основных случая:

    1) x = 0 это значение не удовлетворяет данному уравнению

    2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

    что x – любое число; но принимая во внимание, что в

    нашем случае x > 0 , ответом является x > 0 ;

    Правила умножения степеней с разным основанием

    СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

    СТЕПЕННАЯ ФУНКЦИЯ IV

    § 69. Умножение и деление степеней с одинаковыми основаниями

    Теорема 1. Чтобы перемножить степени с одинаковыми основаниями, достаточно показатели степеней сложить, а основание оставить прежним , то есть

    Доказательство. По определению степени

    2 2 2 3 = 2 5 = 32; (-3) (-3) 3 = (-3) 4 = 81.

    Мы рассмотрели произведение двух степеней. На самом же деле доказанное свойство верно для любого числа степеней с одинаковыми основаниями.

    Теорема 2. Чтобы разделить степени с одинаковыми основаниями, когда показатель делимого больше показателя делителя, достаточно из показателя делимого вычесть показатель делителя, а основание оставить прежним, то есть при т > п

    (a =/= 0)

    Доказательство. Напомним, что частным от деления одного числа на другое называется число, которое при умножении на делитель дает делимое. Поэтому доказать формулу , где a =/= 0, это все равно, что доказать формулу

    Если т > п , то число т - п будет натуральным; следовательно, по теореме 1

    Теорема 2 доказана.

    Следует обратить внимание на то, что формула

    доказана нами лишь в предположении, что т > п . Поэтому из доказанного пока нельзя делать, например, таких выводов:

    К тому же степени с отрицательными показателями нами еще не рассматривались и мы пока что не знаем, какой смысл можно придать выражению 3 - 2 .

    Теорема 3. Чтобы возвести степень в степень, достаточно перемножить показатели, оставив основание степени прежним , то есть

    Доказательство. Используя определение степени и теорему 1 этого параграфа, получаем:

    что и требовалось доказать.

    Например, (2 3) 2 = 2 6 = 64;

    518 (Устно.) Определить х из уравнений:

    1) 2 2 2 2 3 2 4 2 5 2 6 = 2 x ; 3) 4 2 4 4 4 6 4 8 4 10 = 2 x ;

    2) 3 3 3 3 5 3 7 3 9 = 3 x ; 4) 1 / 5 1 / 25 1 / 125 1 / 625 = 1 / 5 x .

    519. (У с т н о.) Упростить:

    520. (У с т н о.) Упростить:

    521. Данные выражения представить в виде степеней с одинаковыми основаниями:

    1) 32 и 64; 3) 8 5 и 16 3 ; 5) 4 100 и 32 50 ;

    2) -1000 и 100; 4) -27 и -243; 6) 81 75 8 200 и 3 600 4 150 .


    Самое обсуждаемое
    Креационная теория сотворения мира Кто сотворил мир Креационная теория сотворения мира Кто сотворил мир
    Владимирский базовый медицинский колледж Владимирский базовый медицинский колледж
    Явление которое происходит только в мейозе Явление которое происходит только в мейозе


    top