Обеднённый уран. Уран: факты и фактики Образование и распад

Обеднённый уран. Уран: факты и фактики Образование и распад

Природный уран состоит из смеси трёх изотопов: 238U - 99,2739 % (период полураспада T 1/2 = 4,468×109 лет), 235U - 0,7024 % (T 1/2 = 7,038×108 лет) и 234U - 0,0057 % (T 1/2 = 2,455×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U.

Радиоактивность природного урана обусловлена в основном изотопами 238U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U.

Известно 11 искусственных радиоактивных изотопов урана с массовыми числами от 227 до 240. Наиболее долгоживущий из них - 233U (T 1/2 = 1,62×105лет) получается при облучении ториянейтронами и способен к спонтанному делению тепловыми нейтронами.

Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца206Pb и 207Pb.

В природных условиях распространены в основном изотопы 234U: 235U: 238U = 0,0054: 0,711: 99,283. Половина радиоактивности природного урана обусловлена изотопом 234U. Изотоп 234U образуется за счёт распада 238U. Для двух последних в отличие от других пар изотопов и независимо от высокой миграционной способности урана характерно географическое постоянство отношенияU238/U235=137,88. Величина этого отношения зависит от возраста урана. Многочисленные натурные измерения показали его незначительные колебания. Так в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959 −1,0042, в солях - 0,996 - 1,005. В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30 - 138,51; причём различие между формами UIV и UVI не установлено; в сфене - 138,4. В отдельных метеоритах выявлен недостаток изотопа 235U. Наименьшая его концентрация в земных условиях найдена в 1972 г. французским исследователем Бужигесом в местечке Окло в Африке(месторождение в Габоне). Так в нормальном уране содержится 0,7025 % урана 235U, тогда как в Окло оно уменьшаются до 0,557 %. Это послужило подтверждением гипотезы о наличии природного ядерного реактора, ведущего к выгоранию изотопа, предсказанной Джордж Ветрилл (George W. Wetherill) из Калифорнийского университета в ЛосАнджелесе и Марк Ингрэмом (Mark G. Inghram) из Чикагского университета и Полом Курода (Paul K. Kuroda), химиком из Университета Арканзаса, ещё в 1956 г. описавшим процесс. Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и др. В настоящее время известно около 17 природных ядерных реакторов.

Получение

Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия - выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой. В этих случаях пользуются едким натром (гидроксидомнатрия).

Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - экстракция и ионный обмен - позволяют решить эту проблему.

Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана - десятые доли грамма на литр).

После этих операций уран переводят в твёрдое состояние - в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов - бора, кадмия, гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO3, которую восстанавливают водородом до UO2.

На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.

Обеднённый уран

После извлечения 235U и 234U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6).

Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Из-за того, что основное использование урана - производство энергии, обеднённый уран - малополезный продукт с низкой экономической ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Физиологическое действие

В микроколичествах (10−5-10−8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10−7г.

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжелые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Добыча урана в мире

10 стран, ответственных за 94 % мировой добычи урана

Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41 250 тонн урана (в 2003 - 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок). Добыча по странам в тоннах по содержанию U на 2005-2006 гг. (смотреть таблицу № 13, приложение А).

Добыча в России

В СССР основными уранорудными регионами были Украина (месторождение Желтореченское, Первомайское и др.), Казахстан (Северный - Балкашинское рудное поле и др.; Южный - Кызылсайское рудное поле и др.; Восточный; все они принадлежат преимущественно вулканогенно -гидротермальному типу); Забайкалье (Антей, Стрельцовское и др.); Средняя Азия, в основном Узбекистан с оруденениями в чёрных сланцах с центром в г. Учкудук. Имеется масса мелких рудопроявлений и проявлений. В России основным урановорудным регионом осталось Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

Добыча в Казахстане

В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21% и 2 место в мире). Общие ресурсы урана порядка 1,5 млн. тонн, из них около 1,1 млн. тонн можно добывать методом подземного выщелачивания.

В 2009 году Казахстан вышел на первое место в мире по добыче урана (добыто 13 500 тонн).

Добыча на Украине

Основное предприятие - Восточный горно-обогатительный комбинат в городе Жёлтые Воды.

Применение

Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли.

Имея высокую плотность и атомный вес, U-238 пригоден для изготовления из него оболочек заряда рефлектора в устройствах синтеза и деления. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов; непосредственно при делении ядер оболочки быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления U-238 энергиями.

U-238 имеет интенсивность спонтанного деления в 35 раз более высокую, чем U-235, 5.51 делений/с*кг. Это делает невозможным применение его в качестве оболочки заряда рефлектора в пушечных бомбах, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон.

Чистый U-238 имеет удельную радиоактивность 0.333 микрокюри/г.

Важная область применения этого изотопа урана - производство плутония-239. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом U-238 нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.

Цепочка распада урана-238

Изотоп уран–238, его в природном уране больше, чем 99 %. Этот изотоп является и самым устойчивым, тепловыми нейтронами его ядро расщепить нельзя. Для того, чтобы разделить 238U, нейтрону нужна дополнительная кинетическая энергия 1.4 МэВ. Ядерный реактор из чистого урана–238 ни при каких условиях работать не будет.

Атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка, в конце концов, оканчивается стабильным нуклидом свинца (смотреть рисунок № 7, приложение Б).

Важнейшим обстоятельством для ядерной энергетики оказывается то, что наиболее распространённый изотоп урана238U тоже является потенциальным источником ядерного горючего. И Сциллард, и Ферми были правы, предполагая, что поглощение нейтронов ураном приведёт к образованию новых элементов. Действительно, при столкновении с тепловым нейтроном уран-238 не делится, вместо этого ядро поглощает нейтрон. В среднем за 23.5 минуты один из нейтронов в ядре превращается в протон (с вылетом электрона, реакция β - распада), и ядроурана-239 становится ядром нептуния-239 (239Np). Через 2.4 суток происходит второй β - распад и образуется плутоний-239 (239Pu).

В результате последовательного поглощения нейтронов в ядерном реакторе могут быть наработаны элементы ещё более тяжёлые, чем плутоний.

В природных минералах и урановой руде обнаруживались только микроколичества 239Pu, 244Pu и 237Np, так что в естественной среде трансурановые элементы (более тяжёлые, чем уран), практически не встречаются.

Изотопы урана, существующие в природе, не совсем стабильны по отношению к α-распаду и спонтанному делению, однако распадаются очень медленно: период полураспада урана-238 равен 4.5 миллиардам лет, а урана-235 – 710 миллионам лет. Из-за малой частоты ядерных реакций такие долгоживущие изотопы не являются опасными источниками радиации. Слиток природного урана можно держать в руках без вреда для здоровья. Его удельная активность равна 0.67 мКи/кг (Ки – кюри, внесистемная единица активности, равная 3.7*1010распадов за секунду).



Уран - это естественно встречающийся в природе элемент, находящий применение,среди прочего, в ядерной энергетике. Природный уран состоит в основном из смеси трех изотопов: 238U, 235U и 234U.

Обедненный уран (ОУ) - это побочный продукт процесса обогащения урана (т. е. повышения содержания в нем расщепляющегося изотопа 235U) в ядерной энергетике; из него практически полностью удален радиоактивный изотоп 234U и на две трети - 235U. Таким образом, ОУ состоит почти полностью из 238U, а его радиоактивность составляет около 60% от радиоактивности природного урана. В ОУ может присутствовать также микроколичество других радиоактивных изотопов, привнесенных в ходе обработки. Химически, физически и токсически ОУ ведет себя так же, как и природный уран в металлическом состоянии. Мелкие частицы обоих металлов легко возгораются, образуя окислы.

Применение обедненного урана. В мирных целях ОУ используется, в частности, при изготовлении самолетных противовесов и противорадиационных экранов медицинской радиотерапевтической аппаратуры, при транспортировке радиоактивных изотопов. Из-за своей высокой плотности и тугоплавкости, а также доступности ОУ используется в тяжелой танковой броне, противотанковых боеприпасах, ракетах и снарядах. Оружие, в котором присутствует ОУ, считается обычным оружием и свободно применяется вооруженными силами.

Вопросы, порождаемые применением обедненного урана . Из выстреленного боеприпаса обедненный уран высвобождается в виде мелких частиц или пыли, которые могут попадать в организм при вдыхании или проглатывании либо оставаться в окружающей среде. Есть вероятность того, что применение оружия с ОУ сказывается на здоровье людей, проживающих в районах конфликтов в Персидском заливе и на Балканах. Некоторые считают, что «синдром войны в Персидском заливе» связан с облучением обедненным ураном, однако причинная зависимость пока не установлена. ОУ попадал в окружающую среду в результате авиакатастроф (например: Амстердам, Нидерланды, 1992 г.; Станстед, Соединенное Королевство, январь 2000 г.), вызывая озабоченность правительств и неправительственных организаций.

Обедненный уран и здоровье человека. Воздействие ОУ на здоровье человека является разным в зависимости от химической формы, в которой он попадает в организм, и может вызываться как химическими, так и радиологическими механизмами. Информации о том, как уран сказывается на здоровье людей и окружающей среде, немного. Вместе с тем, поскольку уран и ОУ - это, в сущности, одно и то же, за исключением состава радиоактивных компонентов, научные исследования по природному урану применимы и к ОУ. Что касается радиационного воздействия ОУ, то картина дополнительно осложняется тем, что большинство данных относится к воздействию на человеческий организм природного и обогащенного урана. Воздействие на здоровье зависит от того, каким образом произошло облучение и какова его степень (через дыхательные пути, при проглатывании, при контакте или через рану), и от характеристик ОУ (размер частиц и растворимость). Вероятность обнаружения возможного воздействия зависит от обстановки (армия, гражданская жизнь, производственная среда).

Типы облучения . При нормальном потреблении человеческим организмом пищи, воздуха и воды в нем присутствует в среднем примерно 90 микрограммов (мкг) урана: примерно 66% в скелете, 16% в печени, 8% в почках и 10% в других тканях. Наружное облучение происходит при близости к металлическому ОУ (например, при работе на складе боеприпасов или при нахождении в машине с боеприпасами или броней, в которых присутствует ОУ) либо при контакте с пылью или осколками, образовавшимися после взрыва или падения. Облучение, полученное только снаружи (т. е. не при проглатывании, не через дыхательные пути и не через кожу), приводит к последствиям исключительно радиологического свойства. Внутреннее облучение происходит в результате попадания ОУ в организм при проглатывании или вдыхании. В армии облучение происходит еще и через раны, образовавшиеся при контакте со снарядами или броней, в которых присутствует ОУ.

Поглощение урана в организме. Большая часть (свыше 95%) урана, попадающего в организм, не поглощается, а удаляется с калом. Из той части урана, которая поглощается кровью, примерно 67% будет в течение суток отфильтровано почками и удалено с мочой. Уран переносится в почки, костную ткань и печень. Подсчитано, что выведение половины этого урана с мочой занимает от 180 до 360 дней.

Опасность для здоровья:

Химическая токсичность: уран вызывает повреждение почек у подопытных животных, и некоторые исследования указывают на то, что долговременное облучение может приводить к нарушению почечной функции у людей. Наблюдавшиеся типы нарушений: узелковые образования на поверхности почки, поражение трубчатого эпителия и повышение содержания глюкозы и белка в моче.

Радиологическая токсичность: распад ОУ происходит главным образом путем испускания альфа-частиц, которые не проникают через внешние слои кожи, но могут влиять на внутренние клетки организма (более подверженные ионизирующему воздействию альфа - излучения), когда ОУ попадает в организм при проглатывании или вдыхании. Поэтому альфа - и бета-облучение при вдыхании нерастворимых частиц ОУ может приводить к повреждению легочных тканей и повышать риск рака легких. Аналогичным образом, предполагается, что поглощение ОУ кровью и его накопление в других органах, в частности в скелете, создает дополнительный риск рака этих органов, зависящий от степени радиационного облучения. Считается, однако, что при низкой степени облучения риск раковых заболеваний весьма низок.

В рамках выполненных на сегодняшний день ограниченных эпидемиологических исследований, посвященных изучению внутреннего облучения в результате попадания частиц ОУ при проглатывании, при вдыхании либо через повреждения кожи или раны, а также в рамках обследования людей, которым по роду занятий приходится сталкиваться с природным или обогащенным ураном, каких-либо негативных последствий для здоровья не обнаружено.

Обедненный уран в окружающей среде. В засушливых регионах большая часть ОУ остается на поверхности в виде пыли. В более дождливых местностях ОУ легче проникает в почву. Возделывание зараженной почвы и потребление зараженной воды и пищи могут создавать опасность для здоровья, однако она будет, скорее всего, невелика. Основным фактором опасности для здоровья будет, скорее, химическая токсичность, а не облучение. Риск облучения обедненным ураном в результате потребления зараженной пищи и воды при возвращении к нормальной жизни в зоне военного конфликта, видимо, более велик для детей, чем для взрослых, поскольку в силу своего любопытства дети склонны тянуть все с рук в рот, а это может привести к попаданию в организм большого количества ОУ с зараженной почвы.

Стандарты. У ВОЗ имеются нормативы в отношении урана, которые применимы и к ОУ. В настоящее время такими нормативами являются:

«Руководство по контролю качества питьевой воды»: 2 мкг/л - показатель, который считается безопасным исходя из данных о субклинических почечных изменениях, приводимых в эпидемиологических исследованиях (ВОЗ, 1998 г.);

допустимая суточная доза (ДСД) для попадания урана через рот: 0,6 мкг на килограмм веса в сутки (ВОЗ, 1998 г.);

предельные нормы ионизирующего облучения: 1 мЗв за год для населения вообще и 20 мЗв в среднем за год на протяжении пяти лет для лиц, работающих в радиационной обстановке (Основные нормы безопасности, 1996 г.).

Изотопы урана - разновидности атомов (и ядер) химического элемента урана, имеющие разное содержание нейтронов в ядре. На данный момент известны 26 изотопов урана и еще 6 возбуждённых изомерных состояний некоторых его нуклидов. В природе встречаются три изотопа урана: 234U (изотопная распространенность 0,0055 %), 235U (0,7200 %), 238U (99,2745 %).

Нуклиды 235U и 238U являются родоначальниками радиоактивных рядов - ряда актиния и ряда радия соответственно. Нуклид 235U используется как топливо в ядерных реакторах, а также в ядерном оружии (благодаря тому, что в нём возможна самоподдерживающаяся цепная ядерная реакция). Нуклид 238U используется для производства плутония-239, который также имеет чрезвычайно большое значение как в качестве топлива для ядерных реакторов, так и в производстве ядерного оружия. Характеристики изотопов урана приведены в таблице 1.

Таблица 1 – Характеристики изотопов урана

Символ нуклида

Масса изотопа (а.е.м.)

Избыток массы (кэВ)

Период полураспада (T1/2)

Спин и чётность ядра

Распространённость изотопа в природе (%)

Энергия возбуждения (кэВ)

220,024720(220)#

221,026400(110)#

222,026090(110)#

940(270) мкс

68,9(4) года

1,592(2)·105 лет

2,455(6)·105 лет

33,5(20) мкс

7,04(1)·108 лет

2,342(3)·107 лет

4,468(3)·109 лет

23,45(2) мин

241,060330(320)#

242,062930(220)#

Примечание:

Распространённость изотопов приведена для большинства природных образцов. Для других источников значения могут сильно отличаться.

Индексами "m", "n", "p" (рядом с символом) обозначены возбужденные изомерные состояния нуклида.

Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Z и N). Неуверенно определённые значения спина и/или его чётности заключены в скобки.

Откуда взялся уран? Скорее всего, он появляется при взрывах сверхновых. Дело в том, что для нуклеосинтеза элементов тяжелее железа должен существовать мощный поток нейтронов, который возникает как раз при взрыве сверхновой. Казалось бы, потом, при конденсации из образованного ею облака новых звездных систем, уран, собравшись в протопланетном облаке и будучи очень тяжелым, должен тонуть в глубинах планет. Но это не так. Уран - радиоактивный элемент, и при распаде он выделяет тепло. Расчет показывает, что если бы уран был равномерно распределен по всей толще планеты хотя бы с той же концентрацией, что и на поверхности, то он выделял бы слишком много тепла. Более того, его поток по мере расходования урана должен ослабевать. Поскольку ничего подобного не наблюдается, геологи считают, что не менее трети урана, а может быть, и весь он сосредоточен в земной коре, где его содержание составляет 2,5∙10 –4 %. Почему так получилось, не обсуждается.

Где добывают уран? Урана на Земле не так уж мало - по распространенности он на 38-м месте. А больше всего этого элемента в осадочных породах - углистых сланцах и фосфоритах: до 8∙10 –3 и 2,5∙10 –2 % соответственно. Всего в земной коре содержится 10 14 тонн урана, но главная проблема в том, что он весьма рассеян и не образует мощных месторождений. Промышленное значение имеют примерно 15 минералов урана. Это урановая смолка - ее основой служит оксид четырехвалентного урана, урановая слюдка - различные силикаты, фосфаты и более сложные соединения с ванадием или титаном на основе шестивалентного урана.

Что такое лучи Беккереля? После открытия Вольфгангом Рентгеном Х-лучей французский физик Антуан-Анри Беккерель заинтересовался свечением солей урана, которое возникает под действием солнечного света. Он хотел понять, нет ли и тут Х-лучей. Действительно, они присутствовали - соль засвечивала фотопластинку сквозь черную бумагу. В одном из опытов, однако, соль не стали освещать, а фотопластинка все равно потемнела. Когда же между солью и фотопластинкой положили металлический предмет, то под ним потемнение было меньше. Стало быть, новые лучи возникали отнюдь не из-за возбуждения урана светом и через металл частично не проходили. Их и назвали поначалу «лучами Беккереля». Впоследствии было обнаружено, что это главным образом альфа-лучи с небольшой добавкой бета-лучей: дело в том, что основные изотопы урана при распаде выбрасывают альфа-частицу, а дочерние продукты испытывают и бета-распад.

Насколько велика радиоактивность урана? У урана нет стабильных изотопов, все они радиоактивные. Самый долгоживущий - уран-238 с периодом полураспада 4,4 млрд лет. Следующим идет уран-235 - 0,7 млрд лет. Оба они претерпевают альфа-распад и становятся соответствующими изотопами тория. Уран-238 составляет более 99% всего природного урана. Из- за его огромного периода полураспада радиоактивность этого элемента мала, а кроме того, альфа-частицы не способны преодолеть ороговевший слой кожи на поверхности человеческого тела. Рассказывают, что И. В. Курчатов после работы с ураном просто вытирал руки носовым платком и никакими болезнями, связанными с радиоактивностью, не страдал.

Исследователи не раз обращались к статистике заболеваний рабочих урановых приисков и обрабатывающих комбинатов. Вот, например, недавняя статья канадских и американских специалистов, которые проанализировали данные о здоровье более 17 тысяч рабочих прииска Эльдорадо в канадской провинции Саскачеван за 1950–1999 годы (Environmental Research , 2014, 130, 43–50, DOI:10.1016/j.envres.2014.01.002). Они исходили из того, что сильнее всего радиация действует на быстро размножающиеся клетки крови, приводя к соответствующим видам рака. Статистика же показала, что у рабочих прииска заболеваемость различными видами рака крови меньше, чем в среднем у канадцев. При этом основным источником радиации считается не сам по себе уран, а порождаемый им газообразный радон и продукты его распада, которые могут попасть в организм через легкие.

Чем же вреден уран ? Он, подобно другим тяжелым металлам, весьма ядовит, может вызывать почечную и печеночную недостаточность. С другой стороны, уран, будучи рассеянным элементом, неизбежно присутствует в воде, почве и, концентрируясь в пищевой цепочке, попадает в организм человека. Разумно предположить, что в процессе эволюции живые существа научились обезвреживать уран в природных концентрациях. Наиболее опасен уран в воде, поэтому ВОЗ установила ограничение: поначалу оно составляло 15 мкг/л, но в 2011 году норматив увеличили до 30 мк/г. Как правило, урана в воде гораздо меньше: в США в среднем 6,7 мкг/л, в Китае и Франции - 2,2 мкг/л. Но бывают и сильные отклонения. Так в отдельных районах Калифорнии его в сто раз больше, чем по нормативу, - 2,5 мг/л, а в Южной Финляндии доходит и до 7,8 мг/л. Исследователи же пытаются понять, не слишком ли строг норматив ВОЗ, изучая действие урана на животных. Вот типичная работа (BioMed Research International , 2014, ID 181989; DOI:10.1155/2014/181989). Французские ученые девять месяцев поили крыс водой с добавками обедненного урана, причем в относительно большой концентрации - от 0,2 до 120 мг/л. Нижнее значение - это вода вблизи шахты, верхнее же нигде не встречается - максимальная концентрация урана, измеренная в той же Финляндии, составляет 20 мг/л. К удивлению авторов - статья так и называется: «Неожиданное отсутствие заметного влияния урана на физиологические системы...», - уран на здоровье крыс практически не сказался. Животные прекрасно питались, прибавляли в весе как следует, на болезни не жаловались и от рака не умирали. Уран, как ему и положено, откладывался прежде всего в почках и костях и в стократно меньшем количестве - в печени, причем его накопление ожидаемо зависело от содержания в воде. Однако ни к почечной недостаточности, ни даже к заметному появлению каких-либо молекулярных маркеров воспаления это не приводило. Авторы предложили начать пересмотр строгих нормативов ВОЗ. Однако есть один нюанс: воздействие на мозг. В мозгах крыс урана было меньше, чем в печени, но его содержание не зависело от количества в воде. А вот на работе антиоксидантной системы мозга уран сказался: на 20% выросла активность каталазы, на 68–90% - глютатионпероксидазы, активность же суперкоксиддисмутазы упала независимо от дозы на 50%. Это означает, что уран явно вызывал окислительный стресс в мозгу и организм на него реагировал. Такой эффект - сильное действие урана на мозг при отсутствии его накопления в нем, кстати, равно как и в половых органах, - замечали и раньше. Более того, вода с ураном в концентрации 75–150 мг/л, которой исследователи из университета Небраски поили крыс полгода (Neurotoxicology and Teratology , 2005, 27, 1, 135–144; DOI:10.1016/j.ntt.2004.09.001), сказалаcь на поведении животных, главным образом самцов, выпущенных в поле: они не так, как контрольные, пересекали линии, привставали на задние лапы и чистили шерстку. Есть данные, что уран приводит и к нарушениям памяти у животных. Изменение поведения коррелировало с уровнем окисления липидов в мозгу. Получается, что крысы от урановой водички делались здоровыми, но глуповатыми. Эти данные нам еще пригодятся при анализе так называемого синдрома Персидского залива (Gulf War Syndrome).

Загрязняет ли уран места разработки сланцевого газа? Это зависит от того, сколько урана в содержащих газ породах и как он с ними связан. Например, доцент Трейси Бэнк из Университета Буффало исследовала сланцевые породы месторождения Марцелус, протянувшегося с запада штата Нью-Йорк через Пенсильванию и Огайо к Западной Виргинии. Оказалось, что уран химически связан именно с источником углеводородов (вспомним, что в родственных углистых сланцах самое высокое содержание урана). Опыты же показали, что используемый при разрыве пласта раствор прекрасно растворяет в себе уран. «Когда уран в составе этих вод окажется на поверхности, он может вызвать загрязнение окрестностей. Радиационного риска это не несет, но уран - ядовитый элемент», - отмечает Трейси Бэнк в пресс-релизе университета от 25 октября 2010 года. Подробных статей о риске загрязнения окружающей среды ураном или торием при добыче сланцевого газа пока не подготовлено.

Зачем нужен уран? Раньше его применяли в качестве пигмента для изготовления керамики и цветного стекла. Теперь же уран - основа атомной энергетики и атомного оружия. При этом используется его уникальное свойство - способность ядра делиться.

Что такое деление ядра? Распад ядра на два неравных больших куска. Именно из-за этого свойства при нуклеосинтезе за счет нейтронного облучения ядра тяжелее урана образуются с большим трудом. Суть явления состоит в следующем. Если соотношение числа нейтронов и протонов в ядре не оптимально, оно становится нестабильным. Обычно такое ядро выбрасывает из себя либо альфа-частицу - два протона и два нейтрона, либо бета-частицу - позитрон, что сопровождается превращением одного из нейтронов в протон. В первом случае получается элемент таблицы Менделеева, отстоящий на две клетки назад, во втором - на одну клетку вперед. Однако ядро урана помимо излучения альфа- и бета-частиц способно делиться - распадаться на ядра двух элементов середины таблицы Менделеева, например бария и криптона, что и делает, получив новый нейтрон. Это явление обнаружили вскоре после открытия радиоактивности, когда физики подвергали новооткрытому излучению все, что придется. Вот как пишет об этом участник событий Отто Фриш («Успехи физических наук», 1968, 96, 4). После открытия бериллиевых лучей - нейтронов - Энрико Ферми облучал ими, в частности, уран, чтобы вызвать бета-распад, - он надеялся за его счет получить следующий, 93-й элемент, ныне названный нептунием. Он-то и обнаружил у облученного урана новый тип радиоактивности, который связал с появлением трансурановых элементов. При этом замедление нейтронов, для чего бериллиевый источник покрывали слоем парафина, увеличивало такую наведенную радиоактивность. Американский радиохимик Аристид фон Гроссе предположил, что одним из этих элементов был протактиний, но ошибся. Зато Отто Ган, работавший тогда в Венском университете и считавший открытый в 1917 году протактиний своим детищем, решил, что обязан узнать, какие элементы при этом получаются. Вместе с Лизой Мейтнер в начале 1938 года Ган предположил на основании результатов опытов, что образуются целые цепочки из радиоактивных элементов, возникающих из-за многократных бета-распадов поглотивших нейтрон ядер урана-238 и его дочерних элементов. Вскоре Лиза Мейтнер была вынуждена бежать в Швецию, опасаясь возможных репрессий со стороны фашистов после аншлюса Австрии. Ган же, продолжив опыты с Фрицем Штрассманом, обнаружил, что среди продуктов был еще и барий, элемент с номером 56, который никоим образом из урана получиться не мог: все цепочки альфа-распадов урана заканчиваются гораздо более тяжелым свинцом. Исследователи были настолько удивлены полученным результатом, что публиковать его не стали, только писали письма друзьям, в частности Лизе Мейтнер в Гётеборг. Там на Рождество 1938 года ее посетил племянник, Отто Фриш, и, гуляя в окрестностях зимнего города - он на лыжах, тетя пешком, - они обсудили возможности появления бария при облучении урана вследствие деления ядра (подробнее о Лизе Мейтнер см. «Химию и жизнь», 2013, №4). Вернувшись в Копенгаген, Фриш буквально на трапе парохода, отбывающего в США, поймал Нильса Бора и сообщил ему об идее деления. Бор, хлопнув себя по лбу, сказал: «О, какие мы были дураки! Мы должны были заметить это раньше». В январе 1939 года вышла статья Фриша и Мейтнер о делении ядер урана под действием нейтронов. К тому времени Отто Фриш уже поставил контрольный опыт, равно как и многие американские группы, получившие сообщение от Бора. Рассказывают, что физики стали расходиться по своим лабораториям прямо во время его доклада 26 января 1939 года в Вашингтоне на ежегодной конференции по теоретической физике, когда ухватили суть идеи. После открытия деления Ган и Штрассман пересмотрели свои опыты и нашли, так же, как и их коллеги, что радиоактивность облученного урана связана не с трансуранами, а с распадом образовавшихся при делении радиоактивных элементов из середины таблицы Менделеева.

Как проходит цепная реакция в уране? Вскоре после того, как была экспериментально доказана возможность деления ядер урана и тория (а других делящихся элементов на Земле в сколько-нибудь значимом количестве нет), работавшие в Принстоне Нильс Бор и Джон Уиллер, а также независимо от них советский физик-теоретик Я. И. Френкель и немцы Зигфрид Флюгге и Готфрид фон Дросте создали теорию деления ядра. Из нее следовали два механизма. Один - связанный с пороговым поглощением быстрых нейтронов. Согласно ему, для инициации деления нейтрон должен обладать довольно большой энергией, более 1 МэВ для ядер основных изотопов - урана-238 и тория-232. При меньшей энергии поглощение нейтрона ураном-238 имеет резонансный характер. Так, нейтрон с энергией 25 эВ имеет в тысячи раз большую площадь сечения захвата, чем с другими энергиями. При этом никакого деления не будет: уран-238 станет ураном-239, который с периодом полураспада 23,54 минуты превратится в нептуний-239, тот, с периодом полураспада 2,33 дня, - в долгоживущий плутоний-239. Торий-232 станет ураном-233.

Второй механизм - беспороговое поглощение нейтрона, ему следует третий более-менее распространенный делящийся изотоп - уран-235 (а равно и отсутствующие в природе плутоний-239 и уран-233): поглотив любой нейтрон, даже медленный, так называемый тепловой, с энергией как у молекул, участвующих в тепловом движении, - 0,025 эВ, такое ядро разделится. И это очень хорошо: у тепловых нейтронов площадь сечения захвата в четыре раза выше, чем у быстрых, мегаэлектронвольтных. В этом значимость урана-235 для всей последующей истории атомной энергетики: именно он обеспечивает размножение нейтронов в природном уране. После попадания нейтрона ядро урана-235 становится нестабильным и быстро делится на две неравные части. Попутно вылетает несколько (в среднем 2,75) новых нейтронов. Если они попадут в ядра того же урана, то вызовут размножение нейтронов в геометрической прогрессии - пойдет цепная реакция, что приведет к взрыву из-за быстрого выделения огромного количества тепла. Ни уран-238, ни торий-232 так работать не могут: ведь при делении вылетают нейтроны со средней энергией 1–3 МэВ, то есть при наличии энергетического порога в 1 МэВ значительная часть нейтронов заведомо не сможет вызвать реакцию, и размножения не будет. А значит, про эти изотопы следует забыть и придется замедлять нейтроны до тепловой энергии, чтобы они максимально эффективно взаимодействовали с ядрами урана-235. При этом нельзя допустить их резонансного поглощения ураном-238: все-таки в природном уране этот изотоп составляет чуть меньше 99,3% и нейтроны чаще сталкиваются именно с ним, а не с целевым ураном-235. А действуя замедлителем, можно поддерживать размножение нейтронов на постоянном уровне и взрыва не допустить - управлять цепной реакцией.

Расчет, проведенный Я. Б. Зельдовичем и Ю. Б. Харитоном в том же судьбоносном 1939 году, показал, что для этого нужно применить замедлитель нейтронов в виде тяжелой воды или графита и обогатить ураном-235 природный уран по меньшей мере в 1,83 раза. Тогда эта идея показалась им чистой фантазией: «Следует отметить, что примерно двойное обогащение тех довольно значительных количеств урана, которые необходимы для осуществления цепного взрыва, <...> представляет собой чрезвычайно громоздкую, близкую к практической невыполнимости задачу». Сейчас эта задача решена, и атомная промышленность серийно выпускает для электростанций уран, обогащенный ураном-235 до 3,5%.

Что такое спонтанное деление ядер? В 1940 году Г. Н. Флеров и К. А. Петржак обнаружили, что деление урана может происходить спонтанно, без всякого внешнего воздействия, правда период полураспада гораздо больше, чем при обычном альфа-распаде. Поскольку при таком делении тоже получаются нейтроны, если не дать им улететь из зоны реакции, они-то и послужат инициаторами цепной реакции. Именно это явление используют при создании атомных реакторов.

Зачем нужна атомная энергетика? Зельдович и Харитон были в числе первых, кто посчитал экономический эффект атомной энергетики («Успехи физических наук», 1940, 23, 4). «...В настоящий момент еще нельзя сделать окончательных заключений о возможности или невозможности осуществления в уране ядерной реакции деления с бесконечно разветвляющимися цепями. Если такая реакция осуществима, то автоматически осуществляется регулировка скорости реакции, обеспечивающая спокойное ее протекание, несмотря на огромное количество находящейся в распоряжении экспериментатора энергии. Это обстоятельство исключительно благоприятно для энергетического использования реакции. Приведем поэтому - хотя это и является делением шкуры неубитого медведя - некоторые числа, характеризующие возможности энергетического использования урана. Если процесс деления идет на быстрых нейтронах, следовательно, реакция захватывает основной изотоп урана (U238), то <исходя из соотношения теплотворных способностей и цен на уголь и уран> стоимость калории из основного изотопа урана оказывается примерно в 4000 раз дешевле, чем из угля (если, конечно, процессы "сжигания" и теплосъема не окажутся в случае урана значительно дороже, чем в случае угля). В случае медленных нейтронов стоимость "урановой" калории (если исходить из вышеприведенных цифр) будет, принимая во внимание, что распространенность изотопа U235 равна 0,007, уже лишь в 30 раз дешевле "угольной" калории при прочих равных условиях».

Первую управляемую цепную реакцию провел в 1942 году Энрико Ферми в Чикагском университете, причем управляли реактором вручную - задвигая и выдвигая графитовые стержни при изменении потока нейтронов. Первая электростанция была построена в Обнинске в 1954 году. Помимо выработки энергии первые реакторы работали еще и на производство оружейного плутония.

Как функционирует атомная станция? Сейчас большинство реакторов работают на медленных нейтронах. Обогащенный уран в виде металла, сплава, например с алюминием, или в виде оксида складывают в длинные цилиндры - тепловыделяющие элементы. Их определенным образом устанавливают в реакторе, а между ними вводят стержни из замедлителя, которые и управляют цепной реакцией. Со временем в тепловыделяющем элементе накапливаются реакторные яды - продукты деления урана, также способные к поглощению нейтронов. Когда концентрация урана-235 падает ниже критической, элемент выводят из эксплуатации. Однако в нем много осколков деления с сильной радиоактивностью, которая уменьшается с годами, отчего элементы еще долго выделяют значительное количество тепла. Их выдерживают в охлаждающих бассейнах, а затем либо захоранивают, либо пытаются переработать - извлечь несгоревший уран-235, наработанный плутоний (он шел на изготовление атомных бомб) и другие изотопы, которым можно найти применение. Неиспользуемую часть отправляют в могильники.

В так называемых реакторах на быстрых нейтронах, или реакторах-размножителях, вокруг элементов устанавливают отражатели из урана-238 или тория-232. Они замедляют и отправляют обратно в зону реакции слишком быстрые нейтроны. Замедленные же до резонансных скоростей нейтроны поглощают названные изотопы, превращаясь соответственно в плутоний-239 или уран-233, которые могут служить топливом для атомной станции. Так как быстрые нейтроны плохо реагируют с ураном-235, нужно значительно увеличивать его концентрацию, но это окупается более сильным потоком нейтронов. Несмотря на то что реакторы-размножители считаются будущим атомной энергетики, поскольку дают больше ядерного топлива, чем расходуют, - опыты показали: управлять ими трудно. Сейчас в мире остался лишь один такой реактор - на четвертом энергоблоке Белоярской АЭС.

Как критикуют атомную энергетику? Если не говорить об авариях, то основным пунктом в рассуждениях противников атомной энергетики сегодня стало предложение добавить к расчету ее эффективности затраты по защите окружающей среды после выведения станции из эксплуатации и при работе с топливом. В обоих случаях возникают задачи надежного захоронения радиоактивных отходов, а это расходы, которые несет государство. Есть мнение, что если переложить их на себестоимость энергии, то ее экономическая привлекательность пропадет.

Существует оппозиция и среди сторонников атомной энергетики. Ее представители указывают на уникальность урана-235, замены которому нет, потому что альтернативные делящиеся тепловыми нейтронами изотопы - плутоний-239 и уран-233 - из-за периода полураспада в тысячи лет в природе отсутствуют. А получают их как раз вследствие деления урана-235. Если он закончится, исчезнет прекрасный природный источник нейтронов для цепной ядерной реакции. В результате такой расточительности человечество лишится возможности в будущем вовлечь в энергетический цикл торий-232, запасы которого в несколько раз больше, чем урана.

Теоретически для получения потока быстрых нейтронов с мегаэлектронвольтными энергиями можно использовать ускорители частиц. Однако если речь идет, например, о межпланетных полетах на атомном двигателе, то реализовать схему с громоздким ускорителем будет очень непросто. Исчерпание урана-235 ставит крест на таких проектах.

Что такое оружейный уран? Это высокообогащенный уран-235. Его критическая масса - она соответствует размеру куска вещества, в котором самопроизвольно идет цепная реакция, - достаточно мала для того, чтобы изготовить боеприпас. Такой уран может служить для изготовления атомной бомбы, а также как взрыватель для термоядерной бомбы.

Какие катастрофы связаны с применением урана? Энергия, запасенная в ядрах делящихся элементов, огромна. Вырвавшись из-под контроля по недосмотру или вследствие умысла, эта энергия способна натворить немало бед. Две самые чудовищные ядерные катастрофы случились 6 и 8 августа 1945 года, когда ВВС США сбросили атомные бомбы на Хиросиму и Нагасаки, в результате чего погибли и пострадали сотни тысяч мирных жителей. Катастрофы меньшего масштаба связаны с авариями на атомных станциях и предприятиях атомного цикла. Первая крупная авария случилась в1949 году в СССР на комбинате «Маяк» под Челябинском, где нарабатывали плутоний; жидкие радиоактивные отходы попали в речку Течу. В сентябре 1957 года на нем же произошел взрыв с выбросом большого количества радиоактивного вещества. Через одиннадцать дней сгорел британский реактор по наработке плутония в Уиндскейле, облако с продуктами взрыва рассеялось над Западной Европой. В 1979 году сгорел реактор на АЭС Тримейл-Айленд в Пенсильвании. К наиболее масштабным последствиям привели аварии на Чернобыльской АЭС (1986) и АЭС в Фукусиме (2011), когда воздействию радиации подверглись миллионы людей. Первая засорила обширные земли, выбросив в результате взрыва 8 тонн уранового топлива с продуктами распада, которые распространились по Европе. Вторая загрязнила и спустя три года после аварии продолжает загрязнять акваторию Тихого океана в районах рыбных промыслов. Ликвидация последствий этих аварий обошлась весьма дорого, и, если бы разложить эти затраты на стоимость электроэнергии, она бы существенно выросла.

Отдельный вопрос - последствия для здоровья людей. Согласно официальной статистике, многим людям, пережившим бомбардировку или живущим на загрязненной территории, облучение пошло на пользу - у первых более высокая продолжительность жизни, у вторых меньше онкологических заболеваний, а некоторое увеличение смертности специалисты связывают с социальным стрессом. Количество же людей, погибших именно от последствий аварий или в результате их ликвидации, исчисляется сотнями человек. Противники атомных электростанций указывают, что аварии привели к нескольким миллионам преждевременных смертей на европейском континенте, просто они незаметны на статистическом фоне.

Вывод земель из человеческого использования в зонах аварий приводит к интересному результату: они становятся своего рода заповедниками, где растет биоразнообразие. Правда, отдельные животные страдают от болезней, связанных с облучением. Вопрос, как быстро они приспособятся к повышенному фону, остается открытым. Есть также мнение, что последствием хронического облучения оказывается «отбор на дурака» (см. «Химию и жизнь», 2010, №5): еще на стадии эмбриона выживают более примитивные организмы. В частности, применительно к людям это должно приводить к снижению умственных способностей у поколения, родившегося на загрязненных территориях вскоре после аварии.

Что такое обедненный уран? Это уран-238, оставшийся после выделения из него урана-235. Объемы отхода производства оружейного урана и тепловыделяющих элементов велики - в одних США скопилось 600 тысяч тонн гексафторида такого урана (о проблемах с ним см. «Химию и жизнь», 2008, №5). Содержание урана-235 в нем - 0,2%. Эти отходы надо либо хранить до лучших времен, когда будут созданы реакторы на быстрых нейтронах и появится возможность переработки урана-238 в плутоний, либо как-то использовать.

Применение ему нашли. Уран, как и другие переходные элементы, используют в качестве катализатора. Например, авторы статьи в ACS Nano от 30 июня 2014 года пишут, что катализатор из урана или тория с графеном для восстановления кислорода и перекиси водорода «имеет огромный потенциал для применения в энергетике». Поскольку плотность урана высока, он служит в качестве балласта для судов и противовесов для самолетов. Годится этот металл и для радиационной защиты в медицинских приборах с источниками излучения.

Какое оружие можно делать из обедненного урана? Пули и сердечники для бронебойных снарядов. Расчет здесь такой. Чем тяжелее снаряд, тем выше его кинетическая энергия. Но чем больше размер снаряда, тем менее концентрирован его удар. Значит, нужны тяжелые металлы, обладающие высокой плотностью. Пули делают из свинца (уральские охотники одно время использовали и самородную платину, пока не поняли, что это драгоценный металл), сердечники же снарядов - из вольфрамового сплава. Защитники природы указывают, что свинец загрязняет почву в местах боевых действий или охоты и лучше бы заменить его на что-то менее вредное, например на тот же вольфрам. Но вольфрам недешев, а сходный с ним по плотности уран - вот он, вредный отход. При этом допустимое загрязнение почвы и воды ураном примерно в два раза больше, чем для свинца. Так получается потому, что слабой радиоактивностью обедненного урана (а она еще и на 40% меньше, чем у природного) пренебрегают и учитывают действительно опасный химический фактор: уран, как мы помним, ядовит. В то же время его плотность в 1,7 раза больше, чем у свинца, а значит, размер урановых пуль можно уменьшить в два раза; уран гораздо более тугоплавкий и твердый, чем свинец, - при выстреле он меньше испаряется, а при ударе в цель дает меньше микрочастиц. В общем, урановая пуля меньше загрязняет окружающую среду, чем свинцовая, правда, достоверно о таком использовании урана неизвестно.

Зато известно, что пластины из обедненного урана применяют для укрепления брони американских танков (этому способствуют его высокие плотность и температура плавления), а также вместо вольфрамового сплава в сердечниках для бронебойных снарядов. Урановый сердечник хорош еще и тем, что уран пирофорен: его горячие мелкие частицы, образовавшиеся при ударе о броню, вспыхивают и поджигают все вокруг. Оба применения считаются радиационно безопасными. Так, расчет показал, что, даже просидев безвылазно год в танке с урановой броней, загруженном урановым боекомплектом, экипаж получит лишь четверть допустимой дозы. А чтобы получить годовую допустимую дозу, надо на 250 часов прикрутить к поверхности кожи такой боеприпас.

Снаряды с урановыми сердечниками - к 30-мм авиационным пушкам или к артиллерийским подкалиберным - применяли американцы в недавних войнах, начав с иракской кампании 1991 года. В тот год они высыпали на иракские бронетанковые части в Кувейте и при их отступлении 300 тонн обедненного урана, из них 250 тонн, или 780 тысяч выстрелов, пришлось на авиационные пушки. В Боснии и Герцеговине при бомбежках армии непризнанной Республики Сербской было истрачено 2,75 тонны урана, а при обстрелах югославской армии в крае Косово и Метохия - 8,5 тонн, или 31 тысяча выстрелов. Поскольку ВОЗ к тому времени озаботилась последствиями применения урана, был проведен мониторинг. Он показал, что один залп состоял примерно из 300 выстрелов, из которых 80% содержало обедненный уран. В цели попадало 10%, а 82% ложилось в пределах 100 метров от них. Остальные рассеивались в пределах 1,85 км. Снаряд, попавший в танк, сгорал и превращался в аэрозоль, легкие цели вроде бронетранспортеров урановый снаряд прошивал насквозь. Таким образом, в урановую пыль в Ираке могло превратиться от силы полторы тонны снарядов. По оценкам же специалистов американского стратегического исследовательского центра «RAND Corporation», в аэрозоль превратилось больше, от 10 до 35% использованного урана. Борец с урановыми боеприпасами хорват Асаф Дуракович, работавший во множестве организаций от эр-риядского Госпиталя короля Фейсала до вашингтонского Уранового медицинского исследовательского центра, считает, что только в Южном Ираке в 1991 году образовалось 3–6 тонн субмикронных частиц урана, которые рассеялись по обширному району, то есть урановое загрязнение там сопоставимо с чернобыльским.

Ура́н-235 (англ. uranium-235), историческое название актиноура́н (лат. Actin Uranium, обозначается символом AcU ) - радиоактивный нуклид химического элемента урана с атомным номером 92 и массовым числом 235. Изотопная распространённость урана-235 в природе составляет 0,7200(51) %. Является родоначальником радиоактивного семейства 4n+3, называемого рядом актиния. Открыт в 1935 году Артуром Демпстером (англ. Arthur Jeffrey Dempster).

В отличие от другого, наиболее распространенного изотопа урана 238U, в 235U возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии.

Активность одного грамма данного нуклида составляет приблизительно 80 кБк.

  • 1 Образование и распад
  • 2 Вынужденное деление
  • 2.1 Цепная ядерная реакция
  • 3 Изомеры
  • 4 Применение
  • 5 См. также
  • 6 Примечания
  • Образование и распад

    Уран-235 образуется в результате следующих распадов:

    • β−-распад нуклида 235Pa (период полураспада составляет 24,44(11) мин):
    • K-захват, осуществляемый нуклидом 235Np (период полураспада составляет 396,1(12) дня):
    • α-распад нуклида 239Pu (период полураспада составляет 2,411(3)·104 лет):

    Распад урана-235 происходит по следующим направлениям:

    • α-распад в 231Th (вероятность 100 %, энергия распада 4 678,3(7) кэВ):
    • Спонтанное деление (вероятность 7(2)·10−9 %);
    • Кластерный распад с образованием нуклидов 20Ne, 25Ne и 28Mg (вероятности соответственно составляют 8(4)·10−10 %, 8·10−10 %, 8·10−10 %):

    Вынужденное деление

    Основная статья: Деление ядра Кривая выхода продуктов деления урана-235 для различных энергий делящих нейтронов.

    В начале 1930-х гг. Энрико Ферми проводил облучение урана нейтронами, преследуя цель получить таким образом трансурановые элементы. Но в 1939 г. О. Ган и Ф. Штрассман смогли показать, что при поглощении нейтрона ядром урана происходит вынужденная реакция деления. Как правило, ядро делится на два осколка, при этом высвобождается 2-3 нейтрона (см. схему).

    В продуктах деления урана-235 было обнаружено около 300 изотопов различных элементов: от Z=30 (цинк) до Z=64 (гадолиний). Кривая зависимости относительного выхода изотопов, образующихся при облучении урана-235 медленными нейтронами, от массового числа - симметрична и по форме напоминает букву «M». Два выраженных максимума этой кривой соответствуют массовым числам 95 и 134, а минимум приходится на диапазон массовых чисел от 110 до 125. Таким образом, деление урана на осколки равной массы (с массовыми числами 115-119) происходит с меньшей вероятностью, чем асимметричное деление, такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра.

    Один из вариантов вынужденного деления урана-235 после поглощения нейтрона (схема)

    Осколки, образующиеся при делении ядра урана, в свою очередь являются радиоактивными, и подвергаются цепочке β−-распадов, при которых постепенно в течение длительного времени выделяется дополнительная энергия. Средняя энергия, выделяющаяся при распаде одного ядра урана-235 с учётом распада осколков, составляет приблизительно 202,5 МэВ = 3,244·10−11 Дж, или 19,54 ТДж/моль = 83,14 ТДж/кг.

    Деление ядер - лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора.

    Цепная ядерная реакция

    Основная статья: Цепная ядерная реакция

    При распаде одного ядра 235U обычно испускается от 1 до 8 (в среднем — 2.5) свободных нейтрона. Каждый нейтрон, образовавшийся при распаде ядра 235U, при условии взаимодействия с другим ядром 235U, может вызвать новый акт распада, это явление называется цепной реакцией деления ядра.

    Гипотетически, число нейтронов второго поколения (после второго этапа распада ядер) может превышать 3² = 9. С каждым последующим этапом реакции деления количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата 235U, или будучи захваченными как самим изотопом 235U с превращением его в 236U, так и иными материалами (например, 238U, или образовавшимися осколками деления ядер, такими как 149Sm или 135Xe).

    Если в среднем каждый акт деления порождает еще один новый акт деления, то реакция становится самоподдерживающейся; это состояние называется критическим. (см. также Коэффициент размножения нейтронов)

    В реальных условиях достичь критического состояния урана не так просто, поскольку на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из 235U, 99,2745 % составляет 238U, который поглощает нейтроны, образующиеся при делении ядер 235U. Это приводит к тому, что в природном уране в настоящее время цепная реакция деления очень быстро затухает. Осуществить незатухающую цепную реакцию деления можно несколькими основными путями:

    • Увеличить объём образца (для выделенного из руды урана возможно достижение критической массы за счёт увеличения объёма);
    • Осуществить разделение изотопов, повысив концентрацию 235U в образце;
    • Уменьшить потерю свободных нейтронов через поверхность образца с помощью применения различного рода отражателей;
    • Использовать вещество — замедлитель нейтронов для повышения концентрации тепловых нейтронов.

    Изомеры

    Известен единственный изомер 235Um со следующими характеристиками:

    • Избыток массы: 40 920,6(1,8) кэВ
    • Энергия возбуждения: 76,5(4) эВ
    • Период полураспада: 26 мин
    • Спин и чётность ядра: 1/2+

    Распад изомерного состояния осуществляется путём изомерного перехода в основное состояние.

    Применение

    • Уран-235 используется в качестве топлива для ядерных реакторов, в которых осуществляется управляемая цепная ядерная реакция деления;
    • Уран с высокой степенью обогащения применяется для создания ядерного оружия. В этом случае для высвобождения большого количества энергии (взрыва) используется неуправляемая цепная ядерная реакция.

    См. также

    • Изотопы урана
    • Разделение изотопов

    Примечания

    1. 12345 G. Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729 : 337-676. DOI:10.1016/j.nuclphysa.2003.11.003. Bibcode: 2003NuPhA.729..337A.
    2. 123456789101112 G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties». Nuclear Physics A 729 : 3–128. DOI:10.1016/j.nuclphysa.2003.11.001. Bibcode: 2003NuPhA.729….3A.
    3. Гофман К. Можно ли сделать золото? - 2-е изд. стер. - Л.: Химия, 1987. - С. 130. - 232 с. - 50 000 экз.
    4. Today in science history
    5. 123 Фиалков Ю. Я. Применение изотопов в химии и химической промышленности. - Киев: Техніка, 1975. - С. 87. - 240 с. - 2 000 экз.
    6. Table of Physical and Chemical Constants, Sec 4.7.1: Nuclear Fission. Kaye & Laby Online. Архивировано из первоисточника 8 апреля 2012.
    7. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. - М.: Энергоатомиздат, 1982. - С. 512.

    Уран-235 Информация о

    Уран-235
    Уран-235

    Уран-235 Информация Видео


    Уран-235 Просмотр темы.
    Уран-235 что, Уран-235 кто, Уран-235 объяснение

    There are excerpts from wikipedia on this article and video

    Уран представляет собой радиоактивный металл. В природе уран состоит из трех изотопов: уран-238, уран-235 и уран-234. Наивысший уровень стабильности фиксируется у урана-238.

    ХарактеристикаЗначение
    Общие сведения
    Название, символ Уран-238, 238U
    Альтернативные названия ура́н оди́н, UI
    Нейтронов 146
    Протонов 92
    Свойства нуклида
    Атомная масса 238,0507882(20) а. е. м.
    Избыток массы 47 308,9(19) кэВ
    Удельная энергия связи (на нуклон) 7 570,120(8) кэВ
    Изотопная распространённость 99,2745(106) %
    Период полураспада 4,468(3)·109 лет
    Продукты распада 234Th, 238Pu
    Родительские изотопы 238Pa (β−)
    242Pu (α)
    Спин и чётность ядра 0+
    Канал распада Энергия распада
    α-распад 4,2697(29) МэВ
    SF
    ββ 1,1442(12) МэВ

    Радиоактивный распад урана

    Радиоакти́вным распа́дом называют процесс внезапного изменения состава или внутреннего строения атомных ядер, которые отличаются нестабильностью. При этом испускаются элементарные частицы, гамма-кванты и/или ядерные фрагменты. Радиоактивные вещества содержат радиоактивное ядро. Получившееся вследствие радиоактивного распада дочернее ядро может тоже стать радиоактивным и спустя определенное время подвергается распаду. Этот процесс происходит до того момента, пока не образуется стабильное ядро, лишенное радиоактивности. Э. Резерфорд методом эксперимента в 1899 доказал, что урановые соли испускают три вида лучей:

    • α-лучи — поток положительно заряженных частиц
    • β-лучи — поток отрицательно заряженных частиц
    • γ-лучи — не создают отклонений в магнитном поле.
    Вид излученияНуклидПериод полураспада
    Ο Уран — 238 U 4,47 млрд. лет
    α ↓
    Ο Торий — 234 Th 24.1 суток
    β ↓
    Ο Протактиний — 234 Pa 1.17 минут
    β ↓
    Ο Уран — 234 U 245000 лет
    α ↓
    Ο Торий — 230 Th 8000 лет
    α ↓
    Ο Радий — 226 Ra 1600 лет
    α ↓
    Ο Полоний — 218 Po 3,05 минут
    α ↓
    Ο Свинец — 214 Pb 26,8 минут
    β ↓
    Ο Висмут — 214 Bi 19,7 минут
    β ↓
    Ο Полоний — 214 Po 0,000161 секунд
    α ↓
    Ο Свинец — 210 Pb 22,3 лет
    β ↓
    Ο Висмут — 210 Bi 5,01 суток
    β ↓
    Ο Полоний — 210 Po 138,4 суток
    α ↓
    Ο Свинец — 206 Pb стабильный

    Радиоактивность урана

    Естественная радиоактивность - вот что отличает радиоактивный уран от прочих элементов. Атомы урана не зависимо ни от каких факторов и условий постепенно изменяются.

    Уран (элемент)

    При этом испускаются невидимые лучи. После трансформаций, которые происходят с атомами урана, получается иной радиоактивный элемент и процесс повторяется. Он будет повторять столько раз, сколько необходимо, чтобы получился не радиоактивный элемент. К примеру, некоторые цепочки превращений насчитывают до 14 стадий. При этом промежуточным элементом является радий, а последняя стадия - образование свинца. Этот металл не является радиоактивным элементом, поэтому ряд превращений прерывается. Однако для полного превращения урана в свинец необходимо несколько миллиардов лет.
    Радиоактивная руда урана часто становится причиной отравлений на предприятиях, занимающихся добычей и переработкой уранового сырья. В человеческом организме уран — общеклеточный яд. Он поражает главным образом почки, но встречаются и поражения печени и желудочно-кишечного тракта.
    Уран не имеет полностью стабильных изотопов. Наибольший период жизни отмечается у урана-238. Полу распад урана-238 происходит на протяжении 4,4 млрд лет. Чуть меньше одного миллиарда лет идет полу распад урана-235 — 0,7 млрд лет. Уран-238 занимает свыше 99% всего объема природного урана. Вследствие его колоссального периода полураспада радиоактивность этого металла не высокая, к примеру, альфа-частицы не могут проникнуть через ороговевший слой кожи человека. После ряда проведенных исследований ученые выяснили, что главным источником радиации является не сам уран, а образуемый им газ радон, а также продукты его распада, попадающие в человеческий организм во время дыхания.

    радиоактивный уран, радиоактивность, радиоактивный распад

    Изотопы и получение урана

    Природный уран состоит из смеси трёх изотопов: 238U- 99,2739 % (период полураспада T 1/2 = 4,468×109 лет), 235U - 0,7024 % (T 1/2 = 7,038×108 лет) и 234U - 0,0057 % (T 1/2 = 2,455×105 лет). Последний изотоп является не первичным, а радиогенным, он входит в состав радиоактивного ряда 238U.

    Радиоактивность природного урана обусловлена в основном изотопами 238U и 234U, в равновесии их удельные активности равны. Удельная активность изотопа 235U в природном уране в 21 раз меньше активности 238U.

    Известно 11 искусственных радиоактивных изотопов урана с массовыми числами от 227 до 240. Наиболее долгоживущий из них - 233U (T 1/2 = 1,62×105лет) получается при облучении ториянейтронами и способен к спонтанному делению тепловыми нейтронами.

    Изотопы урана 238U и 235U являются родоначальниками двух радиоактивных рядов. Конечными элементами этих рядов являются изотопы свинца206Pb и 207Pb.

    В природных условиях распространены в основном изотопы 234U: 235U: 238U = 0,0054: 0,711: 99,283. Половина радиоактивности природного урана обусловлена изотопом 234U. Изотоп 234U образуется за счёт распада 238U. Для двух последних в отличие от других пар изотопов и независимо от высокой миграционной способности урана характерно географическое постоянство отношенияU238/U235=137,88. Величина этого отношения зависит от возраста урана. Многочисленные натурные измерения показали его незначительные колебания. Так в роллах величина этого отношения относительно эталона изменяется в пределах 0,9959 −1,0042, в солях - 0,996 - 1,005. В урансодержащих минералах (настуран, урановая чернь, циртолит, редкоземельные руды) величина этого отношения колеблется в пределах 137,30 - 138,51; причём различие между формами UIV и UVI не установлено; в сфене - 138,4. В отдельных метеоритах выявлен недостаток изотопа 235U. Наименьшая его концентрация в земных условиях найдена в 1972 г. французским исследователем Бужигесом в местечке Окло в Африке(месторождение в Габоне). Так в нормальном уране содержится 0,7025 % урана 235U, тогда как в Окло оно уменьшаются до 0,557 %. Это послужило подтверждением гипотезы о наличии природного ядерного реактора, ведущего к выгоранию изотопа, предсказанной Джордж Ветрилл (George W. Wetherill) из Калифорнийского университета в ЛосАнджелесе и Марк Ингрэмом (Mark G. Inghram) из Чикагского университета и Полом Курода (Paul K. Kuroda), химиком из Университета Арканзаса, ещё в 1956 г. описавшим процесс. Кроме этого, в этих же округах найдены природные ядерные реакторы: Окелобондо, Бангомбе (Bangombe) и др. В настоящее время известно около 17 природных ядерных реакторов.

    Получение

    Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжёлые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжёлые минералы. Вторичные минералы урана легче, в этом случае раньше оседает тяжёлая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

    Следующая стадия - выщелачивание концентратов, перевод урана в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют серную кислоту. Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырёхвалентном состоянии, то этот способ неприменим: четырёхвалентный уран в серной кислоте практически не растворяется. В этом случае нужно либо прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

    Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит доломит или магнезит, реагирующие с серной кислотой.

    В этих случаях пользуются едким натром (гидроксидомнатрия).

    Проблему выщелачивания урана из руд решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с сульфидными минералами подают поток кислорода. При этом из сернистых минералов образуется серная кислота, которая и вымывает уран.

    На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - экстракция и ионный обмен - позволяют решить эту проблему.

    Раствор содержит не только уран, но и другие катионы. Некоторые из них в определённых условиях ведут себя так же, как уран: экстрагируются теми же органическими растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

    Методы ионного обмена и экстракции хороши ещё и тем, что позволяют достаточно полно извлекать уран из бедных растворов (содержание урана - десятые доли грамма на литр).

    После этих операций уран переводят в твёрдое состояние - в один из оксидов или в тетрафторид UF4. Но этот уран ещё надо очистить от примесей с большим сечением захвата тепловых нейтронов - бора, кадмия, гафния. Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Для удаления этих примесей технически чистое соединение урана растворяют в азотной кислоте. При этом образуется уранилнитрат UO2(NO3)2, который при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO4·2H2O) и начинают осторожно прокаливать. В результате этой операции образуется трёхокись урана UO3, которую восстанавливают водородом до UO2.

    На диоксид урана UO2 при температуре от 430 до 600 °C воздействуют сухим фтористым водородом для получения тетрафторида UF4. Из этого соединения восстанавливают металлический уран с помощью кальция или магния.

    Обеднённый уран

    После извлечения 235U и 234U из природного урана, оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6).

    Обеднённый уран в два раза менее радиоактивен, чем природный уран, в основном за счёт удаления из него 234U. Из-за того, что основное использование урана - производство энергии, обеднённый уран - малополезный продукт с низкой экономической ценностью.

    В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью. Обеднённый уран используется для радиационной защиты (как это ни странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолёте «Боинг-747» содержится 1500 кг обеднённого урана для этих целей. Ещё этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

    Физиологическое действие

    В микроколичествах (10−5-10−8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезёнка, почки, скелет, печень, лёгкие и бронхо-лёгочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10−7г.

    Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжелые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

    Добыча урана в мире

    10 стран, ответственных за 94 % мировой добычи урана

    Согласно «Красной книге по урану», выпущенной ОЭСР, в 2005 добыто 41 250 тонн урана (в 2003 - 35 492 тонны). Согласно данным ОЭСР, в мире функционирует 440 реакторов коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объёма его потребления (остальное извлекается из старых ядерных боеголовок). Добыча по странам в тоннах по содержанию U на 2005-2006 гг. (смотреть таблицу № 13, приложение А).

    Добыча в России

    В СССР основными уранорудными регионами были Украина (месторождение Желтореченское, Первомайское и др.), Казахстан (Северный - Балкашинское рудное поле и др.; Южный - Кызылсайское рудное поле и др.; Восточный; все они принадлежат преимущественно вулканогенно -гидротермальному типу); Забайкалье (Антей, Стрельцовское и др.); Средняя Азия, в основном Узбекистан с оруденениями в чёрных сланцах с центром в г. Учкудук. Имеется масса мелких рудопроявлений и проявлений. В России основным урановорудным регионом осталось Забайкалье. На месторождении в Читинской области (около города Краснокаменск) добывается около 93 % российского урана. Добычу осуществляет шахтным способом «Приаргунское производственное горно-химическое объединение» (ППГХО), входящее в состав ОАО «Атомредметзолото» (Урановый холдинг).

    Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

    Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

    Добыча в Казахстане

    В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21% и 2 место в мире). Общие ресурсы урана порядка 1,5 млн. тонн, из них около 1,1 млн. тонн можно добывать методом подземного выщелачивания.

    В 2009 году Казахстан вышел на первое место в мире по добыче урана (добыто 13 500 тонн).

    Добыча на Украине

    Основное предприятие - Восточный горно-обогатительный комбинат в городе Жёлтые Воды.

    Применение

    Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли.

    Имея высокую плотность и атомный вес, U-238 пригоден для изготовления из него оболочек заряда рефлектора в устройствах синтеза и деления. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов; непосредственно при делении ядер оболочки быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления U-238 энергиями.

    U-238 имеет интенсивность спонтанного деления в 35 раз более высокую, чем U-235, 5.51 делений/с*кг. Это делает невозможным применение его в качестве оболочки заряда рефлектора в пушечных бомбах, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон.

    Чистый U-238 имеет удельную радиоактивность 0.333 микрокюри/г.

    Важная область применения этого изотопа урана — производство плутония-239. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом U-238 нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.

    Цепочка распада урана-238

    Изотоп уран–238, его в природном уране больше, чем 99 %. Этот изотоп является и самым устойчивым, тепловыми нейтронами его ядро расщепить нельзя. Для того, чтобы разделить 238U, нейтрону нужна дополнительная кинетическая энергия 1.4 МэВ. Ядерный реактор из чистого урана–238 ни при каких условиях работать не будет.

    Атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка, в конце концов, оканчивается стабильным нуклидом свинца (смотреть рисунок № 7, приложение Б).

    Важнейшим обстоятельством для ядерной энергетики оказывается то, что наиболее распространённый изотоп урана238U тоже является потенциальным источником ядерного горючего. И Сциллард, и Ферми были правы, предполагая, что поглощение нейтронов ураном приведёт к образованию новых элементов.

    Изотопы урана

    Действительно, при столкновении с тепловым нейтроном уран-238 не делится, вместо этого ядро поглощает нейтрон. В среднем за 23.5 минуты один из нейтронов в ядре превращается в протон (с вылетом электрона, реакция β — распада), и ядроурана-239 становится ядром нептуния-239 (239Np). Через 2.4 суток происходит второй β — распад и образуется плутоний-239 (239Pu).

    В результате последовательного поглощения нейтронов в ядерном реакторе могут быть наработаны элементы ещё более тяжёлые, чем плутоний.

    В природных минералах и урановой руде обнаруживались только микроколичества 239Pu, 244Pu и 237Np, так что в естественной среде трансурановые элементы (более тяжёлые, чем уран), практически не встречаются.

    Изотопы урана, существующие в природе, не совсем стабильны по отношению к α-распаду и спонтанному делению, однако распадаются очень медленно: период полураспада урана-238 равен 4.5 миллиардам лет, а урана-235 – 710 миллионам лет. Из-за малой частоты ядерных реакций такие долгоживущие изотопы не являются опасными источниками радиации. Слиток природного урана можно держать в руках без вреда для здоровья. Его удельная активность равна 0.67 мКи/кг (Ки – кюри, внесистемная единица активности, равная 3.7*1010распадов за секунду).

    Получение — уран

    Cтраница 1

    Получение урана из золы отечественного угля — писала газета — можно считать разрешенным вопросом. В 1 т золы некоторых углей содержится атомная энергия, эквивалентная 6 тыс. т угля.  

    Получение урана, золота; разделение продуктов расщепления урана; получение цветных металлов и редкоземельных элементов.  

    Получению урана и тория предшествует сложная комплексная переработка рудного сырья.  

    Для получения урана твердый UF4 восстанавливают кальцием или магнием.  

    Применяется для получения урана, тория и других металлов, а также в органическом синтезе.  

    Энергозатраты на получение урана идеальной закалки реакционной смеси составляют 71 эВ на атом металла.  

    Главным источником получения урана служит минерал уранинит и его разновидности — смоляная обманка, урановые слюдки, настуран, урановая чернь. Большое значение для получения урана и его соединений имеют урано-ванадиевые, урано-фосфорные, урано-мышьяково-кислые соли кальция, меди, бария, получившие название урановых слюдок.  

    В последние годы для получения урана применяют подземное выщелачивание с последующей очисткой растворов. Для подземного выщелачивания применяют серную кислоту и карбонатные растворы.

    Другим крупным потенциальным источником получения урана в США являются сланцы, залегающие на территории штатов Теннесси, Кентукки, Индиана, Иллинойс и Огайо.  

    Известно много других способов получения четы-рехфтористого урана, в том числе реакция взаимодействия фтористого водорода с компактным металлическим ураном в атмосфере водорода, начинающаяся при 250 С.  

    Методики расчета тигельных печей для получения урана практически не существует. При конструировании их можно лишь учесть такие факторы, как количества тепла, выделяемого по реакции и теряемого в окружающее пространство, а также (в случае магниетермического восстановления) количество тепла, которое необходимо подводить с помощью внешних нагревателей.  

    В Японии разработана новая технология получения урана из раствора фосфорной кислоты, используемой для производства фосфорных удобрений. До сооружения завода по извлечению урана из 3 — 4 млн. т фосфатов, импортируемых ежегодно Японией в качестве сырья для производства удобрений, предполагается сооружение опытной установки.  

    Следует подчеркнуть, что процесс получения урана не так прост, как он здесь описан. Следует помнить, что все процессы проводятся в сложной аппаратуре, изготовленной из специальных материалов. При этом должна соблюдаться очень точная дозировка реагентов и поддерживаться необходимая температура. Процесс производства урана требзтет большого количества исключительно чистых реактивов, которые должны быть чище, чем так называемые химически чистые вещества.  

    Страницы:      1    2    3    4


    Самое обсуждаемое
    Штурм дворца дудаева. Грозный. Там, где стоял Президентский Дворец Штурм дворца дудаева Штурм дворца дудаева. Грозный. Там, где стоял Президентский Дворец Штурм дворца дудаева
    Эсхил «Прикованный Прометей Мифы прометей читать краткое содержание Эсхил «Прикованный Прометей Мифы прометей читать краткое содержание
    Изучение поэзии Осипа Мандельштама Изучение поэзии Осипа Мандельштама


    top