Основные концепции биохимической эволюции кратко. Гипотеза биохимической эволюции

Основные концепции биохимической эволюции кратко. Гипотеза биохимической эволюции

Теорий возникновения протобиополимеров – основы жизни на Земле несколько. Рассмотрим наиболее важнейшие из них.

Теория Панспермии.

Данной точки зрения придерживались Аррениус, Гельмгольц, Берг, Вернадский, микробиолог Заварзин.

Согласно данной точки зрения жизнь зародилась в космосе и первые живые существа были привнесены на Землю из космоса вместе с космической пылью, метеоритами. Таким образом, жизнь на Земле существует столько, сколько существует сама планета.

Однако встает вопрос, где появилась первая жизнь? По мнению микробиологов, жизнь могла возникнуть в космосе, в пределах Солнечной системы (космо-химическая теория). Эта химическая, а затем биологическая эволюция происходила до образования Земли.

Доказательством является сравнительный анализ вещества космоса и Земли: основными химическими элементами везде являются О, Н, С, N.

Концентрация вещества в космосе очень мала, поэтому, вероятно, первые элементы жизни связаны с космической пылью, которая имеет следующее строение:

Под воздействием ультрафиолетовых лучей, которых в космосе очень много, могли протекать химические и биологические процессы. В метеоритах найдены углеводороды: пурины, пиримидины, аминокислоты. Впервые органические вещества в метеоритах выделены Берцелиусом. Жизнь на поверхность Земли могли доставлять и кометы. Химический состав комет не отрицает это. Органические вещества в «замороженном» состоянии в метеоритах и кометах могли оставаться неограниченно долгое время и, попав на Землю, при благоприятных условиях могли продолжить развитие.

Аргументы против данной теории:

· длительное пребывание в холоде должно быть губительно, но эксперименты подтверждают, что зародыши простейших микроорганизмов в течение 6 мес. переживают температуру –200оС;

· ультрафиолетовые лучи губительны для в сего живого, но в отсутствии кислорода сложные органические соединения могут существовать не разрушаясь при жестком ультрафиолетовом излучении;

· прохождение метеоритов через атмосферу вызывает значительное повышение температуры, метеориты оплавляются, но есть данные, что микроорганизмы могут переносить высокие температуры и они вполне могли сохраниться внутри метеоритов.

Таким образом, нет фактов, доказывающих полную несостоятельность этой теории.

Термическая теория .

Реакции конденсации, которые привели бы к образованию полимеров из низкомолекулярных предшественников, могут осуществляться путем нагревания. Наиболее хорошо изучен синтез полипептидов. Идея термического синтеза полипептидов принадлежит американскому ученому С. Фоксу, который длительно изучал возможности образования полипептидов в условиях, существовавших на первобытной Земле.

Если смесь аминокислот нагреть до 180-2000 С при нормальных атмосферных условиях или в инертной среде, то образуются продукты расщепления, небольшие олигомеры, в которых мономеры соединены пептидными связями, а также малые количества полипептидов. Полипептиды, полученные термическим путем из аминокислот, – протеиноиды – проявляют многие специфические свойства биополимеров протеинового типа. Однако, более сложные структуры получить не удалось. Не выдвинуты обоснованные теоретические пути данного процесса.

Низкотемпературная теория.

Холодная плазма широко распространена в природе. Некоторые ученые считают что 99% Вселенной находятся в состоянии холодной плазмы. На современной Земле она представлена в виде молний, северных сияний, ионосферы. На абиотической Земле этот вид энергии был способен превращать молекулы в свободные радикалы, активные в химическом отношении. В результате экспериментов с холодной плазмой авторами теории были получены отдельные мономеры, полимеры пептидного типа и липиды.

Теория адсорбции .

Основным контраргументом в спорах об абиогенном возникновении полимерных структур является концентрационный барьер и недостаток энергии для конденсации мономеров в разбавленных растворах. Действительно, по некоторым оценкам концентрация органических молекул в «первичном бульоне» составляла около 1%, что не могло обеспечить протекания реакций полимеризации или поликонденсации в быстрые сроки, как это произошло на Земле по оценкам некоторых ученых. Одно из решений этого вопроса, связанное с преодолеванием концентрационного барьера, было предложено Дж. Д. Берналом , считавшим, что концентрирование разбавленных растворов происходит путем «адсорбции в пресноводных или морских отложениях очень тонких глин».

В результате взаимодействия веществ в процессе адсорбции некоторые связи ослабляются и рвутся, другие возникают, что приводит к разрушению одних и образованию других веществ.

Коацерватная теория .

В 1924г. Выходит в свет книга А.И. Опарина «Происхождение жизни», в которой он выдвигает гипотезу, что происхождение жизни на земле есть результат длительного эволюционного процесса на самой Земле. Сейчас зарождение жизни не возможно, т.к. все экологические ниши заняты и есть кислород – сильный окислитель.

В 1929г. Выходит статья Дж. Холдейна, где он независимо от Опарина приходит к таким же результатам. Но приоритет открытия Опарина однозначен.

Опарин считает, что жизнь на Земле могла возникнуть абиогенным путем. Первые живые организмы были гетеротрофами. Это могло произойти при наличии определенных химических веществ, источников энергии, отсутствии газообразного кислорода и при наличии безгранично длительного времени.

Вероятность самозарождения жизни по Опарину 1/1000 случаев в год, но времени было достаточно от возникновения Земли до появления первых прокариотов (1 млрд лет).

Опарин выделил 4 этапа возникновения жизни на Земле.

1 этап. Образование органических веществ.

Вначале масса Земли была раскалена, постепенно она остывала. В это время углерод соединялся с металлами с образованием карбидов:

С + Ме (Ni, Fe) =карбиды (обнаружены в метеоритах).

В первичной атмосфере Земли были C, H, N.

O2 + 2H2 = 2 H2O

Спектральные исследования показали, что эти вещества присутствуют на солнце и других звездах. Свободный кислород отсутствовал. По мере остывания пары воды могли конденсироваться с образованием первичных водоемов.

Источниками энергии для первичной химической эволюции могли служить:

· распад К40;

· ультрафиолетовое излучение;

· вулканизм;

· удары метеоритов;

· молнии.

В водной среде под воздействием этих видов энергии могли появиться спирты, альдегиды, кислоты.

Гипотеза Опарина вызвала много споров и научных исследований.

В 1953г. Миллер сконструировал специальную установку и провел следующие эксперименты. Через смесь газов CH4, NH3, H2O и H2 он пропускал электрический ток. К концу недели были получены аминокислоты аланин и глутамин.

Оро провел подобный эксперимент, используя в качестве энергии ультрафиолетовое излучение при высокой температуре и получил урацил, рибозу и дезоксирибозу.

Теорию Опарина подтверждают и палеонтологические данные. Первые органические молекулы найдены в слоях, соответствующих возрасту 3,8 млрд лет назад.

2 этап. Полимеризация мономеров.

Доказать полимеризацию в естественных условиях трудно, т.к. полимеры легко разрушаются. Т.е. реакции полимеризации и поликонденсации могли идти только при мягких условиях реакции при наличии катализаторов. Ими могли быть цианиды.

Данные реакции по предложению Дж. Д. Бернала могли осуществляться на границе земля – вода, на скоплениях глин, которые являются прекрасными адсорбентами. Многие виды глин эффективно адсорбируют сахара, азотистые основания, кислоты. При высокой концентрации потенциальных мономеров при наличии внешней энергии могли протекать процессы полимеризации.

3 этап. Появление коацерватов.

Молекулы первых органических соединений, в т.ч. и белков, находились в растворах. Они образовывали коллоидный раствор. При смешивании различных коллоидных растворов возникали фазово-обособленные органические системы – капли белков, отличающиеся друг от друга – коацерватные капли, имеющие некую структурную оболочку, образованную определенным образом ориентированными молекулами. Эта оболочка отделяет каплю от внешней среды, превращая ее в дискретную единицу, содержащую набор химических веществ, отличный от внешней среды. Через эту оболочку возможен обмен веществ между коацерватом и внешней средой по типу открытых систем. Внутри коацерватов под действием катализаторов могла происходить самосборка полимерных молекул в многомолекулярные фазово-обособленные образования – видимые под оптическим микроскопом капли. В них сосредотачивается большинство полимерных молекул, тогда как окружающая среда почти их лишена. Коацерваты могут объединяться, образуя более сложные структуры, поглощать меньшие, делиться на дочерние образования. Таким образом, возникает простейший метаболизм. Вещество входит в каплю, полимеризуется, обуславливая рост системы, а при его распаде продукты этого распада выходят во внешнюю среду, где их раньше не было.

Важно то, что в зависимость от совершенства внутренней организации капель одни из них могут расти быстро, тогда как другие, находясь в той же среде, замедлены в своем росте или подвергаются распаду. Таким образом, на модели коацерватных капель А.И Опарину и его сотрудникам удалось экспериментально показать предбиологический отбор, т.е. зачатки естественного отбора, который в дальнейшем явился движущей силой всего эволюционного процесса.

Исследования Опарина подтверждены другими учеными. Это «пузырьки» Гольдейкера, «микросферы» Фокса, «джейвану» Бахадура. «пробионты» Эгами и многие другие.

4 этап. Возникновение матричного синтеза.

Грань, отделяющая преджизнь от жизни – возникновение матричного синтеза. До этого момента существовали индивидуумы, с появлением матричного синтеза можно говорить о популяциях.

Синтез белков претерпевал эволюционные изменения.

Изначально сборка белков шла на РНК, находящихся в цитоплазме клеток. Это самый простой способ, но при нем не гарантировалось равномерное деление информации между дочерними клетками, т.е. часть признаков могла исчезнуть из популяции.

Более прогрессивный способ возник с появлением ДНК. ДНК были более устойчивыми молекулами, поскольку имели двуцепочечное строение. На первом этапе РНК и ДНК конкурировали и возможно эволюция пошла по дивергентному пути. ДНК стала специализироваться на самовоспроизведении, РНК – синтезе белков. ДНК обосновалась в ядре, РНК – в цитоплазме. Образовались 2 системы синтеза:

– синтез полипептидов – относительно не точный;

– синтез белков – очень точный.

Постепенно возникла система генетического кода, когда триплет нуклеотидов кодировал аминокислоту. С появлением примитивного генетического аппарата обладавшие им протоклетки смогли передавать всем своим потомкам способность синтезировать специфические полипептиды. Образующиеся из них линии давали семейства родственных протоклеток с наследуемыми свойствами, которые подвергались естественному отбору.

Первые живые организмы были гетеротрофными и использовали готовые органические вещества первичного бульона. Автотрофы скорее всего произошли от гетеротрофов на следующем этапе эволюции. Причиной явилось уменьшение количества готовых органических веществ в первичном бульоне, т.к. увеличилось количество протобионтов, а позднее первых живых организмов. Это обострило конкуренцию преимущество стали иметь живые организмы, использующие альтернативные источники энергии. Таким неисчерпаемым источником энергии стал солнечный свет. Сначала это была ультрафиолетовая часть спектра, позднее, с появлением кислорода, в атмосфере начал формироваться озоновый экран – препятствие для ультрафиолетового излучения и преимущество получили организмы, имеющие катализаторы, позволяющие использовать видимую часть спектра для осуществления окислительно-восстановительных реакций. Возник фотосинтез. Это привело к еще большему увеличению содержания кислорода в атмосфере и возникновению процесса дыхания. Накопление кислорода в атмосфере также привело к окончанию абиогенного синтеза.

Из всех теорий происхождения жизни наиболее распространенной и признанной в научном мире является теория биохимической эволюции, предложенная в 1924 г. советским биохимиком академиком А.И. Опариным (в 1936 г. он подробно изложил ее в своей книге "Возникновение жизни").

Сущность этой теории состоит в том, что биологической эволюции - т.е. появлению, развитию и усложнению различных форм живых организмов, предшествовала химическая эволюция - длительный период в истории Земли, связанный с появлением, усложнением и совершенствованием взаимодействия между элементарными единицами, "кирпичиками", из которых состоит все живое - органическими молекулами.

Предбиологическая (химическая) эволюция

По мнению большинства ученых (в первую очередь астрономов и геологов), Земля сформировалась как небесное тело около 5 млрд лет т.н. путем конденсации частиц вращавшегося вокруг Солнца газопылевого облака.

Под влиянием сил сжатия частицы, из которых формируется Земля, выделяют огромное количество тепла. В недрах Земли начинаются термоядерные реакции. В результате Земля сильно разогревается. Таким образом, 5 млрд лет т.н. Земля представляла собой несущийся в космическом пространстве раскаленный шар, температура поверхности которою достигала 4000-8000°С

Постепенно, за счет излучения тепловой энергии в космическое пространство, Земля начинает остывать. Около 4 млрд лет т.н. Земля остывает настолько, что на ее поверхности формируется твердая кора; одновременно из ее недр вырываются легкие, газообразные вещества, поднимающиеся вверх и формирующие первичную атмосферу. По составу первичная атмосфера существенно отличалась от современной. Свободный кислород в атмосфере древней Земли, по-видимому, отсутствовал, а в ее состав входили вещества в восстановленном состоянии, такие, как водород (Н 2), метан (СН 4), аммиак (NH3), пары воды (Н 2О), а возможно, также азот (N2), окись и двуокись углерода (СО и С 02).

Восстановительный характер первичной атмосферы Земли чрезвычайно важен для зарождения жизни, поскольку вещества в восстановленном состоянии обладают высокой реакционной способностью и в определенных условиях способны взаимодействовать друг с другом, образуя органические молекулы. Отсутствие в атмосфере первичной Земли свободного кислорода (практически весь кислород Земли был связан в виде окислов) также является важной предпосылкой возникновения жизни, поскольку кислород легко окисляет и тем самым разрушает органические соединения. Поэтому при наличии в атмосфере свободного кислорода накопление на древней Земле значительного количества органических веществ было бы невозможно.

Когда температура первичной атмосферы достигает 1000°С, в ней начинается синтез простых органических молекул, таких, как аминокислоты, нуклеотиды, жирные кислоты, простые сахара, многоатомные спирты, органические кислоты и др. Энергию для синтеза поставляют грозовые разряды, вулканическая деятельность, жесткое космическое излучение и, наконец, ультрафиолетовое излучение Солнца, от которого Земля еще не защищена озоновым экраном, причем именно ультрафиолетовое излучение ученые считают основным источником энергии для абиогенного (т.е. проходящею без участия живых организмов) синтеза органических веществ.

Признанию и широкому распространению теории А.И. Опарина во многом способствовало то, что процессы абиогенного синтеза органических молекул легко воспроизводятся в модельных экспериментах.

Возможность синтеза органических веществ из неорганических была известна с начала 19 в. Уже в 1828 г. выдающийся немецкий химик Ф. Вёлер синтезировал органическое вещество - мочевину из неорганическою - циановокислого аммония. Однако возможность абиогенного синтеза органических веществ в условиях, близких к условиям древней Земли, была впервые показана в опыте С. Миллера.

В 1953 г. молодой американский исследователь, студент- дипломник Чикагского университета Стенли Миллер воспроизвел в стеклянной колбе с впаянными в нес электродами первичную атмосферу Земли, которая, по мнению ученых того времени, состояла из водорода метана СН 4, аммиака NH, и паров воды Н 20 (рис.1.). Через эту газовую смесь С. Миллер в течение недели пропускал электрические разряды, имитирующие грозовые. По окончании эксперимента в колбе были обнаружены б-аминокислоты (глицин, аланин, аспарагин, глутамин), органические кислоты (янтарная, молочная, уксусная, гликоколовая), у-оксимасляная кислота и мочевина. При повторении опыта С. Миллеру удалось получить отдельные нуклеотиды и короткие полинуклеотидные цепочки из пяти-шести звеньев.

Рис. 1

В дальнейших опытах по абиогенному синтезу, проводимых различными исследователями, использовались не только электрические разряды, но и другие виды энергии, характерные для древней Земли, - космическое, ультрафиолетовое и радиоактивное излучения, высокие температуры, присущие вулканической деятельности, а также разнообразные варианты газовых смеси, имитирующих первичную атмосферу. В результате был получен практически весь спектр органических молекул, характерных для живого: аминокислоты, нуклеотиды, жироподобные вещества, простые сахара, органические кислоты.

Более того, абиогенный синтез органических молекул может происходить на Земле и в настоящее время (например, в процессе вулканической деятельности). При этом в вулканических выбросах можно обнаружить не только синильную кислоту HCN, являющуюся предшественником аминокислот и нуклеотидов, но и отдельные аминокислоты, нуклеотиды и даже такие сложные по строению органические вещества, как порфирины. Абиогенный синтез органических веществ возможен не только на Земле, но и в космическом пространстве. Простейшие аминокислоты обнаружены в составе метеоритов и комет.

Когда температура первичной атмосферы опустилась ниже 100°С, на Землю обрушились горячие дожди и появился первичный океан. С потоками дождя в первичный океан поступали абиогенно синтезированные органические вещества, что превратило его, но образному выражению английского биохимика Джона Холдейна, в разбавленный "первичный бульон". По-видимому, именно в первичном океане начинаются процессы образования из простых органических молекул - мономеров сложных органических молекул - биополимеров.

Однако процессы полимеризации отдельных нуклеотидов, аминокислот и сахаров - это реакции конденсации, они протекают с отщеплением воды, следовательно, водная среда способствует не полимеризации, а, напротив, гидролизу биополимеров (т.е. разрушению их с присоединением воды). жизнь атмосфера планета

Образование биополимеров (в частности, белков из аминокислот) могло происходить в атмосфере при температуре около 180°С, откуда они смывались в первичный океан с атмосферными осадками. Кроме того, возможно, на древней Земле аминокислоты концентрировались в пересыхающих водоемах и полимеризовались в сухом виде под действием ультрафиолетового света и тепла лавовых потоков.

Несмотря на то, что вода способствует гидролизу биополимеров, в живой клетке синтез биополимеров осуществляется именно в водной среде. Этот процесс катализируют особые белки-катализаторы - ферменты, а необходимая для синтеза энергия выделяется при распаде аденозинтрифосфорной кислоты - АТФ. Возможно, синтез биополимеров в водной среде первичного океана катализировался поверхностью некоторых минералов. Экспериментально показано, что раствор аминокислоты аланина может полимеризоваться в водной среде в присутствии особого вида глинозема. При этом образуется пептид полиаланин. Реакция полимеризации аланина сопровождается распадом АТФ.

Полимеризация нуклеотидов проходит легче, чем полимеризация аминокислот. Показано, что в растворах с высокой концентрацией солей отдельные нуклеотиды самопроизвольно полимеризуются, превращаясь в нуклеиновые кислоты.

Жизнь всех современных живых существ - это процесс непрерывного взаимодействия важнейших биополимеров живой клетки - белков и нуклеиновых кислот.

Белки - это "молекулы-рабочие", "молекулы-инженеры" живой клетки. Важнейшая функция белков - каталитическая . Как известно, катализаторы - это вещества, которые ускоряют химические реакции, но сами в конечные продукты реакции не входят. Белки-катализаторы называются ферментами. Ферменты в сотни и тысячи раз ускоряют реакции обмена веществ. Обмен веществ, а значит, и жизнь без них невозможны.

Нуклеиновые кислоты - это "молекулы-компьютеры", молекулы - хранители наследственной информации. Нуклеиновые кислоты хранят информацию не обо всех веществах живой клетки, а только о белках. Достаточно воспроизвести в дочерней клетке белки, свойственные материнской клетке, чтобы они точно воссоздали все химические и структурные особенности материнской клетки, а также свойственный ей характер и темпы обмена веществ. Сами нуклеиновые кислоты также воспроизводятся благодаря каталитической активности белков.

Таким образом, тайна зарождения жизни - это тайна возникновения механизма взаимодействия белков и нуклеиновых кислот. Какими же сведениями об этом процессе располагает современная наука? Какие молекулы явились первичной основой жизни - белки или нуклеиновые кислоты?

Дополнения к теории Опарина

Ученые полагают, что, несмотря на ключевую роль белков в обмене веществ современных живых организмов, первыми "живыми" молекулами были не белки, а нуклеиновые кислоты, а именно рибонуклеиновые кислоты (РНК).

В 1982 г. американский биохимик Томас Чек открыл автокаталитические свойства РНК. Он экспериментально показал, что в среде, содержащей в высокой концентрации минеральные соли, рибонуклеотиды спонтанно (самопроизвольно) полимеризуются, образуя полинуклеотиды - молекулы РНК. На исходных поли - нуклеотидных цепях РНК, как на матрице, путем спаривания комплементарных азотистых оснований образуются РНК-копии. Реакция матричного копирования РНК катализируется исходной молекулой РНК и не требует участия ферментов либо других белков.

Дальнейшие события достаточно хорошо объясняются процессом, который можно было бы назвать "естественным отбором" на уровне молекул. При самокопировании молекул РНК неизбежно возникают неточности, ошибки. Содержащие ошибки копии РНК снова копируются. При повторном копировании вновь могут возникнуть ошибки. В результате популяция молекул РНК на определенном участке первичного океана будет неоднородна.

Поскольку параллельно с процессами синтеза идут и процессы распада РНК, в реакционной среде будут накапливаться молекулы, обладающие либо большей стабильностью, либо лучшими автокаталитическими свойствами (т.е. молекулы, которые быстрее себя копируют, быстрее "размножаются").

На некоторых молекулах РНК, как на матрице, может происходить самосборка небольших белковых фрагментов - пептидов. Вокруг молекулы РНК образуется белковый "чехол".

Наряду с автокаталитическими функциями Томас Чек обнаружил у молекул РНК и явление самосплайсинга. В результате самосплайсинга участки РНК, не защищенные пептидами, самопроизвольно удаляются из РНК (они как бы "вырезаются" и "выбрасываются"), а оставшиеся участки РНК, кодирующие белковые фрагменты, "срастаются", т.е. самопроизвольно объединяются в единую молекулу. Эта новая молекула РНК уже будет кодировать большой сложный белок (рис. 2).

По-видимому, первоначально белковые чехлы выполняли в первую очередь, защитную функцию, предохраняя РНК от разрушения и повышая тем самым ее стабильность в растворе (такова функция белковых чехлов и у простейших современных вирусов).

Очевидно, что на определенном этапе биохимической эволюции преимущество получили молекулы РНК, кодирующие не только защитные белки, но и белки-катализаторы (ферменты), резко ускоряющие скорость копирования РНК. По-видимому, именно таким образом и возник процесс взаимодействия белков и нуклеиновых кислот, который мы в настоящее время называем жизнью.

В процессе дальнейшего развития, благодаря появлению белка с функциями фермента - обратной транскриптазы, на одно - цепочечных молекулах РНК стали синтезироваться состоящие из двух цепей молекулы дезоксирибонуклеиновой кислоты (ДНК). Отсутствие у дезоксирибозы ОН-группы в 2" положении делает молекулы ДНК более стабильными по отношению к гидролитическому расщеплению в слабощелочных растворах, а именно слабощелочной была реакция среды в первичных водоемах (эта реакция среды сохранилась и в цитоплазме современных клеток).

Где же происходило развитие сложного процесса взаимодействия белков и нуклеиновых кислот? По теории А.И. Опарина, местом зарождения жизни стали, так называемые коацерватные капли.

Рис. 2

  • А) в процессе самокопирования РНК накапливаются ошибки (1 - нуклеотиды, соответствующие исходной РНК; 2 - нуклеотиды, не соответствующие исходной РНК, - ошибки в копировании);
  • Б) на часть молекулы РНК за счет ее физико-химических свойств "налипают" аминокислоты (3 - молекула РНК; 4 - аминокислоты), которые, взаимодействуя друг с другом, превращаются в короткие белковые молекулы - пептиды.
  • В) В результате свойственного молекулам РНК самосплайсинга незащищенные пептидами участки молекулы РНК разрушаются, а оставшиеся "срастаются" в единую молекулу, кодирующую крупный белок.
  • Г) В результате возникает молекула РНК, покрытая белковым чехлом (сходное строение имеют и наиболее примитивные современные вирусы, например вирус табачной мозаики)

Явление коацервации состоит в том, что в некоторых условиях (например, в присутствии электролитов) высокомолекулярные вещества отделяются от раствора, но не в форме осадка, а в виде более кон центрированного раствора - коацервата. При встряхивании коацерват распадается на отдельные мелкие капельки. В воде такие капли покрываются стабилизирующей их гидратной оболочкой (оболочкой из молекул воды) - рис. 3

Коацерватные капли обладают некоторым подобием обмена веществ: под воздействием физико-химических сил они могут избирательно впитывать из раствора некоторые вещества и выделять в окружающую среду продукты их распада. За счет избирательного концентрирования веществ из окружающей среды они могут расти, а по достижении определенного размера начинают "размножаться", отпочковывая маленькие капельки, которые, в свою очередь, могут расти и "почковаться".

Возникшие в результате концентрирования белковых растворов коацерватные капли в процессе перемешивания под действием волн и ветра могут покрываться оболочкой из липидов: одинарной, напоминающей мицеллы мыла (при однократном отрыве капли от поверхности воды, покрытой липидным слоем), либо двойной, напоминающей клеточную мембрану (при повторном падении капли, покрытой однослойной липидной мембраной, на липидную пленку, покрывающую поверхность водоема - рис.3).

Процессы возникновения коацерватных капель, их роста и "почкования", а также "одевания" их мембраной из двойного липидного слоя легко моделируются в лабораторных условиях.

Для коацерватных капель также существует процесс "естественного отбора", при котором в растворе сохраняются наиболее стабильные капли.

Несмотря на внешнее сходство коацерватных капель с живыми клетками, у коацерватных капель отсутствует главный признак живого - способность к точному самовоспроизведению, самокопированию. Очевидно, предшественниками живых клеток явились такие коацерватные капли, в состав которых вошли комплексы молекул-репликаторов (РНК или ДНК) и кодируемых ими белков. Возможно, комплексы РНК-белок длительное время существовали вне коацерватных капель в виде так называемого "свободноживущего гена", а возможно, их формирование проходило непосредственно внутри некоторых коацерватных капель.

Рис. 3.

  • А) образование коацсрвата;
  • Б) стабилизация коацерватных капель в водном растворе;
  • В)-- формирование вокруг капли двойного липидного слоя, похожего на клеточную мембрану: 1 - коацерватная капля; 2 - мономолекулярный слой липида на поверхности водоема; 3 - формирование вокруг капли одинарного липидного слоя; 4 - формирование вокруг капли двойного липидного слоя, похожего на клеточную мембрану;
  • Г) - коацерватная капля, окруженная двойным липидным слоем, с вошедшим в ее состав белково-нуклеотидным комплексом - прообраз первой живой клетки

Исключительно сложный, не до конца понятный современной науке процесс возникновения жизни на Земле прошел с исторической точки зрения чрезвычайно быстро. Уже 3,5 млрд. лет т.н. химическая эволюция завершилась появлением первых живых клеток и началась биологическая эволюция.

Теория биохимической эволюции
До середины XX в. многие ученые полагали, что органические соединения могут возникать только в живом организме. Именно поэтому их назвали органическими соединениями в противоположность веществам неживой природы - минералам, которые получили название неорганических соединений. Считалось, что органические вещества возникают только биогенно, а природа неорганических веществ совершенно иная, поэтому возникновение даже простейших организмов из неорганических веществ совершенно невозможно. Однако после того как из обычных химических элементов было синтезировано первое органическое соединение, представление о двух разных сущностях органических и неорганических веществ оказалось несостоятельным. В результате этого открытия возникли органическая химия и биохимия, изучающие химические процессы в живых организмах.

Однако в индивидуальных экспериментальных подходах из 20 протеиногенных аминокислот всегда составляло только максимум тринадцать, кроме того, существовал избыток веществ, которые не связаны в живой природе в связи с синтезом белка. Кроме того, анализ продуктов реакции выявил избыток моно - и полифункциональных молекул, которые являются значительным смешающим фактором для цепи отдельных аминокислот для белков.

Эксперименты Стэнли Миллера можно было рассматривать как первый шаг в формировании жизненно важных молекул. Однако этот шаг, очевидно, ведет к тупику. Поскольку во всех экспериментальных подходах возникает большое количество других веществ одновременно с желаемыми аминокислотами, которые серьезно затрудняют или даже делают невозможными следующие шаги.

Кроме того, данное научное открытие позволило создать концепцию биохимической эволюции, согласно которой жизнь на Земле возникла в результате физических и химических процессов. В основу этой гипотезы были положены данные о сходстве веществ, входящих в состав растений и животных, о возможности в лабораторных условиях синтезировать органические вещества, составляющие белок.

Некоторые из этих белков, ферментов, которые катализируют реакции, которые гарантируют выживание клетки и обеспечить, чтобы они удваиваются. Эксперименты Миллера не могли дать никаких правдоподобных доказательств для образования исходных материалов обеих макромолекул. Даже если бы упростительно предположить, что в качестве исходного материала для нуклеиновых кислот и нескольких аминокислот в качестве строительных блоков для белков потребуется только две основы, основная проблема останется: что было первым, белки или нуклеиновые кислоты.

Академик А.И. Опарин опубликовал в 1924 г. свой труд «Происхождение жизни», где была изложена принципиально новая гипотеза происхождения жизни. Суть гипотезы сводилась к следующему: зарождение жизни на Земле - длительный эволюционный процесс становления живой материи в недрах неживой. И произошло это путем химической эволюции, в результате которой простейшие органические вещества образовались из неорганических под влиянием сильнодействующих физико-химических факторов, и тем самым химическая эволюция постепенно поднялась на качественно новый уровень и перешла в биохимическую эволюцию.

Доказательства того, что были примитивные предшественники репликативной и метаболически активной системы, пока нет. Однако есть свидетельства того, что одна молекула-предшественник может сочетать обе функции, а именно хранение генетической информации и катализ или авторепликацию.

Оказалось, что на более поздних стадиях развития эти задачи полностью переносятся белками. Эти соображения долгое время оставались в сфере спекуляций. Эксперименты Миллера Урсуппена были относительно неспецифичны в поисках органических макромолекул как возможных исходных материалов для белков и нуклеиновых кислот. Некоторые из них будут представлены ниже.

Рассматривая проблему возникновения жизни путем биохимической эволюции, Опарин выделяет три этапа перехода от неживой материи к живой:

Синтез исходных органических соединений из неорганических веществ в условиях первичной атмосферы первобытной Земли;

Формирование в первичных водоемах Земли из накопившихся органических соединений биополимеров, липидов, углеводородов;

В дальнейшем, этот синтетический путь был исследован, и было обнаружено, что это был автокаталитический реакционный цикл, который был вызван небольшими количествами примесей формальдегида и вывел в качестве первого гликолевого продукта реакции. Если бы можно было направить реакцию Бутлерова на синтез рибозы, это может быть идеальным путем к сахарному компоненту нуклеотидов. Однако на этом пути были подготовлены только сахарные смеси, и рибозы всегда обнаруживались только в исчезающе малых количествах.

Однако вскоре стало очевидно, что катионы свинца катализируют синтез альдоптентозов, что приводит к предположению, что рибозы могут образовываться в пребиотических условиях. Химический синтез аденина пуринового основания до сих пор остается загадкой. Основой возможного синтеза пребиотического аденина является цианид водорода или синильная кислота. Джон Оро и его коллеги смогли извлечь небольшое количество аденина из цианида аммония в начале шестидесятых годов. Это побудило ученых искать другие возможные пути аденина.

Самоорганизация сложных органических соединений, возникновение на их основе и эволюционное совершенствование процесса обмена веществ и воспроизводства органических структур, завершающееся образованием простейшей клетки.

Несмотря на всю экспериментальную обоснованность и теоретическую убедительность, концепция Опарина имеет как сильные, так и слабые стороны.

Миякава предположил, что пурины в ранней земной атмосфере были сформированы независимо от цианистого водорода. Кристофер Чиба и Карл Саган еще более смело рассуждают о том, что пурины были произведены в других местах нашей солнечной системы и снесены на землю метеоритами. Роберт Шапиро, один из ведущих исследователей происхождения, критично относится к этим соображениям. Именно потому, что аденин играет важную роль в репликации всех известных живых существ, очевидно, что аденин был компонентом системы репликации в начале жизни.

Но химические свойства аденина говорят против такой роли. Это три веские причины, из-за которых Шапиро отвергает привлекательную возможность того, что аденин мог быть компонентом первой репликативной системы. Он также скептически относится к возможному пребиотическому синтезу пиримидинов. Они не были обнаружены ни в метеоритах, ни в экспериментах с электрическими разрядами. Химический синтез представляет собой такую ​​сложность, что Шапиро также считает, что цитозин как возможный компонент ранней молекулы репликатора очень маловероятен.

Сильной стороной концепции является достаточно точное соответствие ее химической эволюции, согласно которой зарождение жизни есть закономерный результат добиологической эволюции материи. Убедительным аргументом в пользу этой концепции выступает также возможность экспериментальной проверки ее основных положений. Это касается лабораторного воспроизведения не только предполагаемых физико-химических условий первичной Земли, но и коацерватов, имитирующих доклеточного предка и его функциональное особенности.

Таким образом, следует отметить, что в настоящее время нет убедительных моделей для синтеза нуклеотидов при вероятных пребиотических условиях. Несколько реакционных ступеней, вероятно, можно имитировать, но всегда использовать чистые исходные материалы и нередко с очень низким выходом продукта. Обсуждаются мысли о внеземном происхождении основных строительных блоков нуклеиновых кислот, но они не могут способствовать решению актуальной проблемы. Сшивание активированных нуклеотидов до более длинных молекул обычно происходит не спонтанно, а только при добавлении внешних факторов активации к реакции.

Слабая сторона концепции - это невозможность объяснить сам момент скачка от сложных органических соединений к живым организмам - ведь ни в одном из поставленных экспериментов получить жизнь так и не удалось. Кроме того, Опарин допускает возможность самовоспроизведения коацерватов при отсутствии молекулярных систем с функциями генетического кода. Иными словами, без реконструкции эволюции механизма наследственности объяснить процесс скачка от неживого к живому невозможно. Поэтому сегодня считается, что решить эту сложнейшую проблему биологии без привлечения концепции открытых каталитических систем, молекулярной биологии, а также кибернетики не получится

Из-за очень низкой скорости реакции нуклеозидных фосфатов в водном растворе при умеренных температурах и значениях рН эту реакцию невозможно легко смоделировать в лаборатории. Таким образом можно синтезировать только полимеры нескольких нуклеотидов. Самой большой проблемой является источник свободной энергии, который может стимулировать полимеризацию нуклеотидов. Эту проблему можно решить с использованием глинистых минералов. Феррис еще не может объяснить, как глина может выполнить эту задачу, но интенсивно проводит исследования со своей командой, чтобы прояснить этот вопрос.

Основные Гипотезы происхождения жизни на земле.

Биохимическая эволюция

Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5 – 5 млрд. лет.

По мнению многих биологов, в прошлом состояние нашей планеты было мало похоже на нынешнее: вероятно температура на поверхности была очень высокой (4000 - 8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, подвижек и сжатий коры, вызванных охлаждением, происходило образование складок и разрывов.

Эта трудность часто наблюдалась и упоминалась как энантиомерное кросс-ингибирование. Это может поставить под сомнение все наиболее правдоподобные объяснения происхождения механизмов пребиотической репликации. Он фокусируется на следующих предположениях.

Пребиотические основания, сахара, фосфаты присутствовали в достаточном количестве и чистоте. Это образовавшиеся нуклеотиды, основные строительные блоки нуклеиновых кислот и накопленные в небольшом озере. На дне озера были глинистые минералы, которые катализировали образование длинноцепочечных одноцепочечных полинуклеотидов. Некоторые из них были преобразованы в двойные пряди с помощью шаблонного синтеза.

Полагают, что гравитационное поле еще недостаточно плотной планеты не могло удерживать легкие газы: водород, кислород, азот, гелий и аргон, и они уходили из атмосферы. Но простые соединения, содержащие среди прочих эти элементы (вода, аммиак, CO2 и метан). До тех пор, пока температура Земли не упала ниже 100°C, вся вода находилась в парообразном состоянии. Отсутствие кислорода, вероятно, было необходимым условием для возникновения жизни; как показывают лабораторные опыты, органические вещества (основа жизни) гораздо легче образуются в атмосфере бедной кислородом.

Копия рибозима приводит к дальнейшим рибозиму и так далее. Это привело к экспоненциально растущему населению. На этом этапе сценария естественный отбор продолжил бы этот процесс. По словам Дарвина, жизнь началась из первоначального организма. Согласно еще более радикальным идеям созерцания молекулярных биологов, вся биосфера будет происходить из нескольких самовоспроизводящихся полинуклеотидов, образовавшихся на примитивной почве.

Авторы этого утопического молекулярного зрелища вполне могут отметить, что еще предстоит решить многие нерешенные проблемы, прежде чем эта мечта может превратиться в серьезную и убедительную теорию. Кроме того, еще предстоит показать, как рибозимы удерживают продукты вместе в терминах их собственной активности, например, путем включения в мембранную систему, которая будет кратко рассмотрена.

В 1923 г. А.И. Опарин, исходя из теоретических соображений, высказал мнение, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений. Энергию для этих процессов поставляла интенсивная солнечная радиация, главным образом ультрафиолетовое излучение, падавшее на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался «первичный бульон», в котором могла возникнуть жизнь.

С помощью компьютерного моделирования они пытаются имитировать происхождение жизни, а также представлять молекулярную эволюцию в цифровом виде во времени. Все вышеупомянутые трудности и препятствия для саморазвития исходных материалов нуклеиновых кислот в этом случае не должны рассматриваться в этих экспериментальных подходах.

Шустер выбрал способ компьютерного моделирования, потому что он обеспокоен большими препятствиями обычного, г. час белый на основе экспериментальных исследований, основанных на лабораторных экспериментах. Явления, подобные адаптации, составляют от 10 3 до 10 6 поколений. Такие периоды времени слишком велики для экспериментов в обычном смысле. Кроме того, комбинация возможных генотипов становится неуправляемой. Наконец, сложная связь между генотипом и фенотипом затрудняет реалистичное моделирование.

Понять происхождение человека нельзя, не поняв происхождение жизни. А понять происхождение жизни можно, лишь поняв происхождение Вселенной.

Сначала был большой взрыв. Этот взрыв энергии произошел пятнадцать миллиардов лет назад.

Эволюцию можно представить себе в виде Эйфелевой башни. В основании - энергия, выше - материя, планеты, затем жизнь. И наконец на самой верхушке - человек, самое сложное и позже всех появившееся животное.

Единственной необходимой предпосылкой для молекулярной эволюции, контролируемой компьютером, являются молекулы, способные к размножению. Это может затем атаковать отбор и адаптацию при изменении условий окружающей среды. Времена генерации самореплицирующихся молекул чрезвычайно короткие. Явления, такие как адаптация, становятся наблюдаемыми. Оба свойства, последовательность и пространственная структура неразрывно связаны. Таким образом, этот подход предлагает простую модельную систему для изучения процессов адаптации в лаборатории.

Ход эволюции:

15 млрд лет назад: рождение Вселенной;

5 млрд лет назад: рождение Солнечной системы;

4 млрд лет назад: рождение Земли;

3 млрд лет назад: первые следы жизни на Земле;

500 млн лет назад: первые позвоночные;

200 млн лет назад: первые млекопитающие;

70 млн лет назад: первые приматы.

Согласно этой гипотезе, предложенной в 1865г. немецким ученым Г. Рихтером и окончательно сформулированной шведским ученым Аррёниусом в 1895 г., жизнь могла быть занесена на Землю из космоса. Наиболее вероятно попадание живых организмов внеземного происхождения с мётеоритами и космической пылью. Это предположение основывается на данных о высокой устойчивости некоторых организмов и их спор к радиации, глубокому вакууму, низким температурам и другим воздействиям.

Таким образом, исследователи Шустера могут создавать молекулы с оптимальными свойствами, которые впоследствии могут быть синтетически синтезированы. Этот «игрушечный мир», как называет сам Шустер, представляет собой простую, но эффективную модельную модель для моделирования событий молекулярной адаптации. Эта модель, безусловно, подходит для понимания микроэволюционных процессов.

На молекулярном уровне он думает о происхождении репликации в целом, о переводе или происхождении генетического кода, о сложном взаимодействии регуляции генов. На макроскопическом уровне это будет переход от прокариотов к эукариотам, от одноклеточных организмов до многоклеточных организмов или даже к развитию организмов, вплоть до людей.

В 1969 году в Австралии был найден метеорит "Мэрчисон". Он содержал 70 неповрежденных аминокислот, восемь из которых входят в состав человеческого белка!

Многие ученые могли возразить, что белки, окаменевшие при вхождении в атмосферу, были мертвы. Однако недавно был открыт прион, белок, который выдерживает очень высокие температуры. Прион сильнее вируса и способен гораздо быстрее передавать болезнь. Согласно теории Панспермии человек каким то образом берет начало от вируса внеземного происхождения, поразившего обезьян, которые в результате мутировали.

Вопрос о происхождении первых клеток еще предстоит решить с помощью необходимых шагов, упомянутых выше, для выяснения происхождения жизни. Многие ученые считают, что предки всех живых существ были своего рода одноклеточным существом, контейнером, в котором белки и нуклеиновые кислоты, кофакторы и другие были упакованы и окружены относительно непроницаемой оболочкой. Даже на этом следующем необходимом этапе пребиотической эволюции в настоящее время существуют только предположения о возможных механизмах формирования первых клеток.

Центральными компонентами клеточных мембран являются фосфолипиды, которые могут спонтанно собираться в бислоях для образования круговых структур. Хотя нет доказательств наличия синтетических возможностей в пребиотических условиях, существуют модельные системы относительно того, как липидные бислои могут впервые появиться в супе изначального сустава и как можно визуализировать примитивное деление клеток.

Теория самопроизвольного зарождения жизни

Эта теория была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму, с которым она сосуществовала.

Аристотель (384 – 322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. На основе собственных наблюдений он развивал эту теорию дальше, связываю все организмы в непрерывный ряд – «лестницу природы». «Ибо природа совершает переход от безжизненных объектов к животным с такой плавной последовательностью, поместив между ними существа, которые живут, не будучи при этом животными, что между соседними группами, благодаря их тесной близости, едва можно заметить различия» (Аристотель).

Открытие архебактерий возлагало надежды на то, что эти микроорганизмы могут быть хорошими модельными системами, поскольку первыми предшественниками клеток могли быть. Однако вскоре стало очевидно, что архебактерии, в частности, содержат очень сложные метаболические системы, которые не являются «примитивными» и поэтому вряд ли могут быть использованы в качестве возможного архетипа примитивного одноклеточного живого организма.

Мечта о «стандартной модели» для создания жизни, сформулированной Джойсом и Оргелем, остается в сфере спекуляций. Ни для пребиотического происхождения строительных блоков нуклеиновых кислот и белков нет безопасных экспериментальных данных, ни для прототипа самовоспроизводящейся генетической системы, кроме того, вопрос об организации генетического материала на клеточном уровне невозможен. Также вопрос: курица или яйцо, д. час были ли белки или нуклеиновые кислоты в качестве первых предшественников жизни до сих пор неясно.

Согласно гипотезе Аристотеля о спонтанном зарождении, определенные «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что это активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует также в солнечном свете, тине и гниющем мясе.

«Таковы факты – живое может возникать не только путем спаривания животных, но и разложением почвы. Так же обстоит дело и у растений: некоторые развиваются из семян, а другие как бы самозарождаются под действием всей природы, возникая из разлагающейся земли или определенных частей растений» (Аристотель).

С распространением христианства теория спонтанного зарождения жизни оказалась не в чести: ее признали лишь те, кто верил в колдовство и поклонялся нечистой силе, но эта идея все продолжала существовать где-то на заднем плане в течение еще многих веков.

Теория стационарного состояния

Согласно этой теории, Земля никогда не возникала, а существовала вечно, она всегда способна поддерживать жизнь, а если и изменялась, то очень мало. Виды также существовали всегда.

Оценки возраста земли сильно варьировали – от примерно 6000 лет по расчетам архиепископа Ашера до 5000 10 в 6 степени лет по современным оценкам, основанным на учете скоростей радиоактивного распада. Более совершенные методы датирования дают все более высокие оценки возраста Земли, что позволяет сторонникам теории стационарного состояния считать, что Земля существовала вечно. Согласно этой теории, виды также никогда не возникали, они существовали всегда и у каждого вида есть лишь две альтернативы – либо изменение численности, либо вымирание.

Сторонники этой теории не признают, что наличие или отсутствие определенных ископаемых остатков может указывать на время появления или вымирания того или иного вида, и приводят в качестве примера представителя кистеперых рыб – латимерию. Сторонники теории стационарного состояния утверждают, что только изучая ныне живущие виды и сравнивая их с ископаемыми остатками, можно делать вывод о вымирании, да и в этом случае весьма вероятно, что он окажется неверным. Используя палеонтологические данные для подтверждения теории стационарного состояния, ее немногочисленные сторонники интерпретируют появление ископаемых остатков в экологическом аспекте (увеличение численности, миграции в места благоприятные для сохранения остатков и т. п.). Большая часть доводов в пользу этой теории связана с такими неясными аспектами эволюции, как значение разрывов в палеонтологической летописи, и она наиболее подробно разработана именно в этом направлении.

Креационизм

Креационизм (лат. сгеа - создание). Согласно этой концепции, жизнь и все населяющие Землю виды живых существ являются результатом творческого акта высшего существа в какое-то определенное время. Основные положения креационизма изложены в Библии, в Книге Бытия. Процесс божественного сотворения мира мыслится как имевший место лишь единожды и поэтому недоступный для наблюдения. Этого достаточно, чтобы вынести всю концепцию божественного сотворения за рамки научного исследования. Наука занимается только теми явлениями, которые поддаются наблюдению, а поэтому она никогда не будет в состоянии ни доказать, ни отвергнуть эту концепцию.

Теория водного происхождения человека


Она гласит: человек произошел прямо из воды. Т.е. мы когда то были чем-то вроде морских приматов, или гуманоидными рыбами.

«Водную теорию» происхождения человека выдвинул Алистер Харди (1960), а развивала Элейн Морган. После чего идею транслировали многие популяризаторы, например, Ян Линдблад и легендарный подводник Жак Майоль. По мнению Харди и Морган, одним из наших предков была большая обезьяна миоцена из семейства проконсулов, которая, прежде чем стать земной, много миллионов лет обитала в воде.

В пользу происхождения «водной обезьяны» приводятся такие особенности человека:

1. Способность задерживать дыхание, апноэ (в том числе во время вокализации) делает человека ныряльщиком.

2. Работа ловкими кистями и использование орудий сходно с поведением енота-полоскуна и калана.

3. Переходя вброд водоемы, приматы встают на задние конечности. Полуводный образ жизни способствовал развитию прямохождения.

4. Утрата волосяного покрова и развитие подкожного жира (у человека в норме он толще, чем у других приматов) - характерны для водных млекопитающих.

5. Большая грудь помогала удерживать в воде корпус и согревать сердце.

6. Волосы на голове помогали удерживаться младенцу.

7. Удлиненная стопа помогала плавать.

8. Между пальцами рук есть кожная складка.

9. Сморщив нос, человек может закрыть ноздри (обезьяны – нет)

10. Ухо человека меньше набирает воду

И еще например если новорожденного поместить в воду сразу после того как он покинет материнское лоно, он будет себя отлично чувствовать. Он уже умеет плавать. Ведь чтобы новорожденный перешел от стадии рыбы к стадии млекопитающего дышащего воздухом его нужно похлопать по спине.

50 млн лет назад дельфины вышли из воды и стали сухопутными животными. А потом по неизвестным причинам решили вернуться в воду. Нам остается лишь последовать их примеру.

Трансформизм

Выдвинута в 1815 году Жаном Батистом Ламарком

Изменения внешней среды влекут за собой изменение клеток.

Разлом вынудил(!!) первых доисторических людей жить в безлесной саванне. Они не могли более взбираться на деревья, спасаясь от хищников. Люди вынуждены были встать на задние лапы, чтобы издалека видеть врага в высокой траве. Постоянно опасаясь нападения, люди выпрямились и превратились из "животных, в основном живущих на деревьях и иногда принимающихвертикальное положение" в "прямоходящих животных иногда взирающихся на деревья".

Использование нижних конечностей освободило верхние лапы, теперь в руках можно было держать палку и использовать ее как оружие.

Прямохождение открыло эру и других изменений, в частности в костяке.Таз сделался корзиной для внутренностей. Раньше соединение позвоночного столба и черепа было горизонтальным. Теперь оно стало вертикальным, и объем черепа увеличился, так как спинной мозг больше не мешал ему.

За 2 млн лет объем мозга вырастает с 450 до 1000 кубических сантиметров, затем от 1000 до современных 1450.

У нас почти не осталось шерсти. Шерсть была нужна чтобы младенцы могли вцепиться в живот матери. Это стало ненужным, когда матери смогли взять детей на руки. И шерсть осталась на макушке черепа для защиты от солнца. Над глазами (брови) защита от дождя.

Отличие от дарвинизма в том что, дарвинисты считают, что люди - это животные, у которых случайно оказался ген, позволивший им встать на задние лапы. А ламаркисты считают, что любое животное если это необходимо, может трансформировать свои гены.

Идеи Ламарка дают каждому надежду на лучшее. А Дарвин, если ты представитель не самого удачного вида, не оставляет тебе шанса.

Развиваясь в течение 9 мес, зародыш человека проживают всю историю своего вида.

12-тидневный эмбрион напоминал крошечного удлиненного червяка с большими глазами. Похож на зародыш рыбы.

Когда человеческому эмбриону тридцать один день, он похож на ящерицу, в 9 недель - на детеныша землеройки, в 18 недель ничем не отличается от зародыша обезьяны.

Дарвинизм

Материалистическая теория эволюции (исторического развития) органического мира Земли, основанная на воззрениях Ч. Дарвина.

Два основных двигателя эволюции. Первое- случай, второе - отбор видов. Природа ставила одновременно тысячи эксперементов. А естественный отбор затем устраняет наименее приспособленных.

Картина истории предков человека.

70 млн лет назад: появление первых приматов. Они были насекомоядными и очень походили на землероек.

40 млн лет назад; появление первых лемуров.У этих животных уже были характерные для человека черты: отстоящий большой палец, поские ногти, плоское лицо. Расположенный под углом к ладони большой палец позволяет хватать предметы и пользоваться ими как инструментами. Плоские ногти вместо когтей дают возможность сжимать кулак. У лемуров у первых появилась кисть руки.Благодаря плоским лицам лемуры начали видеть объемно. Животные, у которых глаза расположены по бокам морды, не могут определять расстояние и различать рельеф. Улемуров морда перестала быть вытянутой, и глаза окаались на одной плоскости. Лемуры обрели возможность видеть мир в трех измерениях.

20 млн лет назад лемуров обогнали обезьяны, их гораздо более ловкие мутировавшие кузены.

Примерно между 4,4 и 2,8 млн лет тому назад, появляется ветвь обезьян-австралопитеков, из которых позднее вышли люди. Человек стал отличаться от гориллы или шимпанзе благодаря изменениям климата. Обезьяны населяли Восточную Африку, где произошло землятресение, спровоцировавшее разлом почвы, так называемый рифт. Разлом вызвал образование трех особых климатических зон: зону густых лесов, гористую зону, зону саванн с редкой растительностью. В густых лесах выжили только предки шимпанзе, в горах предки горилл, а в зоне саванн с редкой растительностью - австралопитеки, то есть наши предки.

Основным различием между австралопитеком и доисторической гориллой или шимпанзе было исчезновение хвоста, необходимого для того, чтобы удерживать равновесие при прыжках с ветки на ветку. Дотронетесь до вашего копчика. Этот бесполезный маленький обрубок хвоста внизу спины - последний признак древесной обезьяны, которой человек был до появления разлома.

Отсутствие хвоста - не единственное различие между человеком и обезьяной. Постепенно распрямился торс, увеличился объем черепа, лицо сделалось плоским, и у человека повилось стереоскопическое зрение. Не забудем и опущение гортани. Раньше приматы издавали лишь орчание, опущение же гортани значительно расширело диапазон звуков.Исчезла шерсть, период детства удлиннился, то есть удлинилось время для обучения детей.Возникли более сложные социальные отношения.

И вот он, ХОМО САПИЕНС, то есть мы. Одна из совершенных форм творения природы.

Эволюция жизни на Земле

Проблема происхождения жизни на Земле принадлежат к числу величайших проблем естествознания. Эта проблема привлекала к себе внимание человека с незапамятных времен. Однако в разные эпохи и на разных ступенях развития человеческой культуры эта проблема решалась по-разному. Теории, касающиеся возникновения Земли, да и всей вселенной разнообразны и далеко недостоверны. Вот основные из них:

1. Креационизм. Согласно этой идее жизнь была создана творцом (от лат. слова create – создавать).

2. Гипотеза стационарного состояния. Жизнь, как и сама Вселенная, существовала не всегда и будет существовать вечно, поскольку не имеет начала и конца.

3. Гипотеза самопроизвольного зарождения, согласно которой жизнь возникает самопроизвольно из неживой материи.

4. Теория панспермии – идея о том, что жизнь была занесена на Землю извне, из космоса. Надо сказать, что эта теория является популярной и до сих пор среди ученых.

Все эти теории по большей части умозрительны и не имеют прямых доказательств. В настоящее время нет единого мнения по вопросу о происхождении жизни среди ученых. Наиболее широкое признание в современной науке получила гипотеза, сформулированная советским ученым акад. А. И. Опариным и английским ученым Дж. Холдейном.

Теория биохимической эволюции

(биохимическая теория происхождения жизни)

В 1923 году советский ученый Опарин высказал мнение, что атмосфера Земли была не такой, как сейчас. Исходя из теоретических соображений, он предположил, что жизнь возникла постепенно из неорганических веществ путем длительной молекулярной эволюции.

1. Считают, что Земля и другие планеты солнечной системы образовались из газово-пылевого облака около 4,5 млрд лет назад. На первых этапах своего существования Земля имела очень высокую температуру. По мере остывания планеты тяжелые элементы перемещались к центру, а более легкие оставались на поверхности. Например, атомы железа концентрировались в центре (по мнению ученых, в настоящее время ядро земли состоит из расплавленного, разогретого до нескольких тысяч градусов С о железа, по размерам в 2 раза меньше Луны). Менее тяжелые атомы кремния и алюминия образуют земную кору. Самые легкие оставались во внешних слоях облака и формировали первичную атмосферу Земли. Она состояла из свободного Н 2 и его соединений: воды, метана, аммиака и НСN и поэтому носила восстановительный характер (соединения водорода легко вступают в химические реакции, отдавая водород и при этом сами окисляются).

Компоненты атмосферы подвергались воздействию различных источников энергии:

· Жесткому, близкому к рентгеновскому коротковолновому излучению Солнца


· Грозовым разрядам

· Высокой температуры в области грозовых разрядов и вулканической деятельности (т.е. горячей лавы, горячих источников, гейзеров)

· Ударным волнам от метеоритов, попадающих в земную атмосферу.

В результате этих воздействий химически простые компоненты атмосферы вступали во взаимодействие, изменяясь и усложняясь. Возникли молекулы сахаров, аминокислот, азотистые основания, органические кислоты (уксусная, муравьиная, молочная) и другие простые органические соединения.

Отсутствие в атмосфере кислорода и восстановительная среда являлись необходимым условием возникновения органических молекул небиологическим путем. Кислород взаимодействует с органическими веществами и разрушает их или лишает тех свойств, которые были бы полезны для предбиологических систем. Поэтому, если бы органические молекулы на первобытной Земле соприкасались с кислородом, то они существовали бы недолго и не успевали бы образовывать более сложные структуры.

В 1953 году Стенли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В герметичной колбе были созданы условия атмосферы (пары воды, аммиака, метана, синильной кислоты, углекислый газ). Бесцветное содержимое колбы подвергалось действию высоких температур, электрических разрядов и в результате приобретало красный оттенок, за счет образования жирных кислот, мочевины, сахаров и аминокислот.

Другие ученые проводили подобные эксперименты, используя разные источники энергии. Во всех экспериментах при отсутствии кислорода удавалось получить широкий набор различных органических продуктов. Особое внимание у исследователей вызывала возможность образования аминокислот – ведь это строительный материал белковых молекул. В дальнейшем оказалось, что абиогенным путем могут быть синтезированы многие простые соединения, входящих в состав биологических полимеров – белков, нуклеиновых кислот и полисахаридов.

Возможность абиогенного синтеза органических соединений доказывается тем, что они обнаружены и в космическом пространстве. В космосе найдены цианистый водород, формальдегид, муравьиная кислота, метиловый и этиловые спирты и другие простые органические соединения. В некоторых метеоритах заключены жирные кислоты, сахара, аминокислоты. Эти соединения образуются и в настоящее время, когда газообразные продукты извержения вулканов и лава вступают в реакцию в водой.

Все это свидетельствует о том, что органические соединения могли возникать чисто химическим путем в условиях, существовавших на Земле около 4 млрд лет назад. Необходимыми условиями этого являются:

· Восстановительный характер атмосферы (отсутствие О 2)

· Высокая температура

· Источники энергии (УФ излучение Солнца, грозовые разряды и пр.)

2. Следующим этапом было образование полимеров из мономеров.

По мере охлаждения Земли, водяной пар, содержащийся в атмосфере, конденсировался, на поверхность Земли обрушивались дожди, образуя большие водные пространства. Реакция полимеризации первичных звеньев в водном растворе не идет, так как при соединении друг с другом двух аминокислот или двух нуклеотидов отщепляется молекула воды. Реакция в воде пойдет в обратную сторону. Скорость расщепления (гидролиза) биополимеров будет больше, чем скорость их синтеза. Ясно, что биополимеры не могли возникнуть сами в первичном океане.

Возможно, первичный синтез биополимеров шел при замораживании первичного океана или же при нагревании сухого его остатка.

Американский исследователь Сидней Фокс, нагревая до 130С сухую смесь аминокислот, показал, что в этом случае реакция полимеризации идет (выделяющаяся вода испаряется) и получаются искусственные протеиноиды, похожие на белки, имеющие до 200 и более аминокислот в цепи. Растворенные в воде, они обладали свойствами белков, представляли питательную среду для бактерий и даже катализировали (ускоряли) некоторые химические реакции, как настоящие ферменты.

Возможно, они возникали в предбиологическую эпоху на раскаленных склонах вулканов, а затем дожди смывали их в первичный океан. Есть и такая точка зрения, что синтез биополимеров шел непосредственно в первичной атмосфере и образующиеся соединения выпадали в первичный океан в виде частиц пыли.

Так возникли прообразы современных белков и нуклеиновых кислот. Среди случайно образующихся полипептидов могли быть такие, которые обладали каталитической активностью и могли ускорять процессы синтеза полинуклеотидов.

Биохимическая эволюция

Среди астрономов, геологов и биологов принято — считать, что возраст Земли составляет примерно 4,5-5 млрд. лет.

По мнению многих биологов, в далеком прошлом состояние нашей планеты было мало похоже на нынешнее: по всей вероятности, температура ее поверхности была очень высокой (4000-8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, непрерывных подвижек коры и сжатия, вызванного охлаждением, происходило образование складок и разрывов.

Полагают, что в те времена атмосфера была совершенно не такая, как теперь. Легкие газы — водород, гелий, азот, кислород и аргон — уходили из атмосферы, так как гравитационное поле нашей еще недостаточно плотной планеты не могло их удержать. Однако простые соединения, содержащие (среди прочих) эти элементы, должны были удерживаться; к ним относятся вода, аммиак, двуокись углерода и метан. До тех пор пока температура Земли не упала ниже 100°С, вся вода, вероятно, находилась в парообразном состоянии.

Атмосфера была, по-видимому, “восстановительной”, о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например трехвалентное железо. Отсутствие в атмосфере кислорода было, вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере, богатой кислородом.В 1923 г. А. И. Опарин высказал мнение, что атмосфера первичной Земли была не такой, как сейчас, а примерно соответствовала сделанному выше описанию. Исходя из теоретических соображений, он полагал, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), падавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие

находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот “первичный бульон”, в котором могла возникнуть жизнь. Эта идея была не нова: в 1871 г. сходную мысль высказал Дарвин:

Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать, имеются и в настоящее время. Но если (ох, какое это большое “если”) представить себе, что в каком-то небольшом теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т.п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа”.

В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке (рис. 24.1), снабженной источником энергии, ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. После этого Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).

Позднее возникло предположение, что в первичной атмосфере, в относительно высокой концентрации содержалась двуокись углерода. Недавние эксперименты, приведенные с использованием установки Миллера, н которую, однако, поместили смесь СО 2 и Н 2 О и только следовые количества других газов, дали такие же результаты, какие получил Миллер. Теория Опарина завоевала широкое признание, но она, оставляет нерешенными проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в этом аспекте теория биохимической эволюции предлагает общую схему, приемлемую для большинства современных биологов. Однако они не пришли к единому мнению о деталях этого процесса.

Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул они способны к образованию коллоидных гидрофильных комплексов -притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспендированы (водной фазы), и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной среды — процесс, называемый коацервацией (от лат. coacervus — сгусток или куча). Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, в особенности кристаллоиды. Коллоидный состав данного коацервата, очевидно, зависел от состава среды. Разнообразие состава “бульона” в разных местах вело к различиям в химическом составе коацерватов и поставляло таким образом сырье для “биохимического естественного отбора”.

Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции; при этом происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и внешней средой выстраивались молекулы липидов (сложные углеводороды), что приводило к образованию примитивной клеточной мембраны, обеспечивавшей концерватам стабильность. В результате включения в коацерват пред существующей молекулы, способной к. самовоспроизведению, и внутренней перестройки покрытого липидной оболочкой коацервата могла возникнуть примитивная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые могли поглощать больше компонентов среды, так что этот процесс мог продолжаться. Такая предположительная последовательность событий должна была привести к возникновению примитивного самовоспроизводящегося гетеротрофного организма, питавшегося органическими веществами первичного бульона.

Хотя эту гипотезу происхождения жизни признают очень многие ученые, астроном Фред Хойл недавно высказал мнение, что мысль о возникновении живого в результате описанных выше случайных взаимодействий молекул “столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой, может привести к сборке Боинга-747” 1 .

1 Самое трудное для этой теории — объяснить появление способности живых систем к самовоспроизведению. Гипотезы по этому вопросу пока мало убедительны.


Самое обсуждаемое
Династия медичи Знаменитые флорентийцы Династия медичи Знаменитые флорентийцы
Методический материал «Артикуляционные упражнения Методический материал «Артикуляционные упражнения
Быть личностью презентация к уроку по обществознанию (8 класс) на тему Быть личностью презентация к уроку по обществознанию (8 класс) на тему


top