Образование органических веществ. Образование органических соединений

Образование органических веществ. Образование органических соединений

В условиях современной Земли естественного образования органических соединений из неорганических практически не происходит. Тем более невозможно возникновение живой органики. Что касается ранней Земли, то условия на ней были совершенно другими. Восстановительная атмосфера с высокой концентрацией водорода, метана и аммиака, интенсивное ультрафиолетовое излучение Солнца, не поглощаемое такой атмосферой, и мощные электрические разряды в атмосфере создавали необходимые и, видимо, достаточные условия для образования органических соединений. Действительно, лабораторные эксперименты, проведенные в условиях, моделирующих предполагаемую атмосферу ранней Земли, позволили получить ряд органических соединений, в том числе аминокислоты, входящие в состав живых белков.

Отсутствие кислорода в атмосфере явилось необходимым условием для самопроизвольного синтеза органики. Однако с точки зрения последующих превращений этот фактор оказался деструктивным. В самом деле, лишенная кислорода атмосфера практически свободно пропускает мощное ультрафиолетовое излучение (атмосфера современной Земли обладает возникшим вместе с кислородной составляющей озоновым слоем, который поглощает это излучение). Излучение, обеспечивая энергией химические реакции синтеза органических соединений, в то же время стремится сразу же их уничтожить. Поэтому образовавшиеся в атмосфере биополимеры, липиды и углеводороды, едва возникнув, были обречены. Для того чтобы не погибнуть, им необходимо было укрыться от губительного воздействия солнечного ультрафиолета. Считается, что часть этих органических соединений избежала гибели, попав в водную среду первичных водоемов.

Здесь, в водной среде, органические соединения вступали в разнообразные химические реакции, среди которых преимущество приобретали реакции, приводившие к саморазвитию наиболее активных катализаторов. Природа весьма жестко вела естественный отбор реакций циклического типа, способных к самоподдержанию, в том числе за счет энергии, выделяемой в ходе реакции. Проблема энергетического обеспечения эволюционных реакций, в частности реакций полимеризации (объединение однотипных молекул – мономеров в макромолекулы) выглядит наиболее важной на этом этапе эволюции, поскольку водная среда мало способствует активизации химических реакций. Именно поэтому «выжить» могли только высокоэнергетические реакции с участием особо эффективных, саморазвивающихся катализаторов.

Здесь наступил один из узловых моментов развития. Допустим, что необходимые для перехода к биоэволюции химические реакции возникли и приобрели свойство самоподдержания. Для их сохранения (и, конечно же, дальнейшего развития) соответствующие объемы должны быть как-то изолированы от неорганизованной окружающей среды, не потеряв при этом возможности обмениваться с ней веществом и энергией. Одновременное выполнение двух этих, на первый взгляд, несовместимых условий было обязательным для выхода химической эволюции на качественно новый уровень.

Такая возможность нашлась благодаря образованию из липидов особых структур – мембранных оболочек . Результаты современных лабораторных экспериментов дают основания полагать, что при определенной концентрации липидов в воде и внешних условиях, моделирующих состояние атмосферы и гидросферы тогдашней Земли, происходит характерный процесс самоорганизации, приводящий ксамосборке липидных оболочек со свойствами мембран .

Далее нетрудно допустить, что процессы отбора циклических каталитических реакций и самосборки липидных оболочек совпали во времени и в пространстве. Так вполне могли появиться природные образования, изолированные от деструктивного воздействия окружающей среды, но связанные с нею обменом веществ. Самоподдерживающиеся реакции стали протекать в своеобразном реакторе, способствующем сохранению существенной неравновесности заключенной в нем системы биополимеров. Теперь положение химических реагентов приобрело упорядоченность, процессы адсорбции на оболочке способствовали повышению их концентрации и, тем самым, активизации каталитического эффекта. По сути, состоялся переход от химических смесей к организованным системам, приспособленным к дальнейшему восходящему развитию .

Рассматривается также и ряд других моделей, приводящих к подобному важному, но всё же промежуточному событию на пути перехода к биологической эволюции. Одна из них рассматривает процессы, связанные с образованием в атмосфере исходных органических соединений, в предположении, что ранняя Земля с ее разреженной восстановительной атмосферой была холодным телом, имевшим температуру порядка – 50°С. Существенным пунктом этой модели является предположение о том, что атмосфера в этих условиях была ионизована, т. е. находилась в состоянии холодной плазмы. Эта плазма считается основным источником энергии для реакций химической эволюции. Предположение же о низкой температуре привлечено для объяснения сохранения образовавшихся в атмосфере биополимеров: замерзая, они выпадали на ледяной покров Земли и в этом природном холодильнике хранились «до лучших времен». В таком виде ультрафиолетовое излучение и мощные разряды электричества были для них уже не столь опасны.

Далее предполагается, что «лучшие времена» наступили с активизацией тектонической деятельности, началом массового извержения вулканов. Выделение продуктов вулканической деятельности в атмосферу привело к ее уплотнению и смещению границы ионизации в более высокие слои. С изменением температурных условий ледяной покров, естественно, растаял, образовались первичные водоемы, в которых после размораживания начали активную химическую деятельность накопленные за длительное время биополимеры, липиды и углеводороды. Можно поэтому говорить об их высокой концентрации в «первичном бульоне» (так нередко называют образовавшуюся субстанцию), что явилось еще одним положительным фактором с точки зрения активизации химической эволюции.

Неоднократными экспериментами подтверждено, что в процессе размораживания липиды действительно демонстрируют самосборку, образуя микросферы с диаметром в десятки микрометров. Не суть важно, как оказываются внутри них биополимеры – проникают ли сквозь мембранный слой или липидная оболочка обволакивает их постепенно. Важно то, что в объеме, окруженном мембранной оболочкой, мог начаться новый этап эволюции – переход от химических реакций к биохимическим.

Что же касается решающего момента – перехода к простейшей клетке, то он может рассматриваться как результат характерного для самоорганизации вещества скачка. Для подготовки этого скачка в процессе химической эволюции должны были появиться еще некоторые структуры, способные выполнять необходимые для протоклетки функции. Такими структурными фрагментами считаются группировки , обеспечивающие перенос заряженных частиц, что необходимо для транспорта вещества. Другие группировки должны обеспечить снабжение энергией – в основном это молекулы фосфоросодержащих соединений (система АДФ–АТФ). Наконец, необходимо образование полимерных структур типа ДНК и РНК, главная функция которых – служитькаталитической матрицей для самовоспроизводства.

Не следует упускать из виду еще один узловой момент, связанный с нарушением изомерной симметрии. Каким образом произошел выбор в пользу левовращающего органического вещества, можно только догадываться, однако то, что эта флуктуация непосредственно предшествовала зарождению жизни, представляется совершенно естественным. Можно предполагать, что биологическая эволюция была «запущена» возникновением левовращающей протоклетки.

Как известно, все вещества могут быть поделены на две большие категории - минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но какие типы соединений попадают во вторую категорию? Органические вещества представлены в любом живом организме.

Белки

Важнейшим примером органических веществ являются белки. В их состав входит азот, водород и кислород. Помимо них, иногда в некоторых белках также можно обнаружить атомы серы.

Белки являются одними из важнейших органических соединений, и они наиболее часто встречаются в природе. В отличие от других соединений, белкам свойственны некоторые характерные черты. Главное их свойство - это огромная молекулярная масса. Например, молекулярный вес атома спирта составляет 46, бензола - 78, а гемоглобина - 152 000. По сравнению с молекулами других веществ, белки являются настоящими великанами, содержащими в себе тысячи атомов. Иногда биологи называют их макромолекулами.

Белки являются самыми сложными из всех органических строений. Они относятся к классу полимеров. Если рассмотреть молекулу полимера под микроскопом, то можно увидеть, что она представляет собой цепь, состоящую из более простых структур. Они носят название мономеров и повторяются в полимерах множество раз.

Помимо белков существует большое количество полимеров - каучук, целлюлоза, а также обычный крахмал. Также немало полимеров создано и руками человека - капрон, лавсан, полиэтилен.

Образование белка

Как же образуются белки? Они представляют собой пример органических веществ, состав которых в живых организмах определяется генетическим кодом. При их синтезе в подавляющем большинстве случаев используются различные комбинации

Также новые аминокислоты могут образовываться уже когда белок начинает функционировать в клетке. При этом в нем встречаются только альфа-аминокислоты. Первичная структура описываемого вещества определяется последовательностью остатков аминокислотных соединений. И в большинстве случаев полипептидная цепь при образовании белка закручивается в спираль, витки которой располагаются тесно друг к другу. В результате образования водородных соединений она имеет достаточно прочную структуру.

Жиры

Другим примером органических веществ могут послужить жиры. Человеку известно немало видов жиров: сливочное масло, говяжий и рыбий жир, растительные масла. В больших количествах жиры образуются в семенах растений. Если очищенную семечку подсолнечника положить на лист бумаги и придавить, то на листе останется маслянистое пятно.

Углеводы

Не менее важными в живой природе являются углеводы. Они содержатся во всех органах растений. К классу углеводов относится сахар, крахмал, а также клетчатка. Богаты ими клубни картофеля, плоды банана. Очень легко обнаружить крахмал в картофеле. При реакции с йодом этот углевод окрашивается в синий цвет. В этом можно убедиться, если капнуть на срез картофелины немного йода.

Также несложно обнаружить и сахара - они все имеют сладкий вкус. Много углеводов этого класса содержится в плодах винограда, арбузов, дыни, яблони. Они представляют собой примеры органических веществ, которые также производятся в искусственных условиях. Например, из сахарного тростника добывается сахар.

А как образуются углеводы в природе? Самым простым примером является процесс фотосинтеза. Углеводы представляют собой органические вещества, в которых содержится цепь из нескольких углеродных атомов. Также в их состав входит несколько гидроксильных групп. В процессе фотосинтеза сахар неорганических веществ образуется из оксида углерода и серы.

Клетчатка

Еще одним примером органических веществ является клетчатка. Больше всего ее содержится в семенах хлопка, а также стеблях растений и их листьях. Клетчатка состоит их линейных полимеров, ее молекулярная масса составляет от 500 тысяч до 2 млн.

В чистом виде она представляет собой вещество, у которого отсутствует запах, вкус и цвет. Применяется оно при изготовлении фотопленки, целлофана, взрывчатки. В организме человека клетчатка не усваивается, однако является необходимой частью рациона, поскольку стимулирует работу желудка и кишечника.

Вещества органические и неорганические

Можно привести немало примеров образования органических и Вторые всегда происходят из минералов - неживых которые образуются в глубинах земли. Они входят и в состав различных горных пород.

В естественных условиях неорганические вещества образуются в процессе разрушения минералов либо органических веществ. С другой стороны, из минералов постоянно образуются вещества органические. Например, растения поглощают воду с растворенными в ней соединениями, которые в дальнейшем переходят из одной категории в другую. Живые организмы используют для питания главным образом органические вещества.

Причины разнообразия

Нередко школьникам или студентам нужно ответить на вопрос о том, в чем заключаются причины многообразия органических веществ. Главный фактор состоит в том, что атомы углерода соединяются между собой при помощи двух типов связей - простых и кратных. Также они могут образовывать цепи. Еще одной причиной является разнообразие различных химических элементов, которые входят в органические вещества. Кроме того, многообразие обусловлено и аллотропией - явлением существования одного и того же элемента в различных соединениях.

А как образуются неорганические вещества? Природные и синтетические органические вещества и их примеры изучаются как в старших классах школы, так и в профилированных высших учебных заведениях. Образование неорганических веществ - это не такой сложный процесс, как образование белков или углеводов. Например, соду с незапамятных времен люди добывали из содовых озер. В 1791 году ученый-химик Николя Леблан предложил синтезировать ее в лабораторных условиях с использованием мела, соли, а также серной кислоты. Когда-то всем привычная сегодня сода была достаточно недешевым продуктом. Для проведения опыта было необходимо прокалить поваренную соль вместе с кислотой, а затем образовавшийся сульфат прокалить вместе с известняком и древесным углем.

Другим является марганцовка, или перманганат калия. Это вещество получают в промышленных условиях. Процесс образования заключается в электролизе раствора гидроксида калия и марганцевого анода. При этом анод постепенно растворяется с образованием раствора фиолетового цвета - это и есть всем известная марганцовка.

Образование органического вещества как на суше, так и в океане начинается с воздействия солнечного света на хлорофилл зеленых растений. Из каждого миллиона фотонов, достигающих географической оболочки, не более 100 идет на производство пиши. Из них 60 расходуется растениями суши и 40 фитопланктоном океана. Эта доля света обеспечивает планету органическим веществом.

Фотосинтез происходит в диапазоне тепла от 3 до 35°C. В современных климатах растительность занимает на суше 133,4 млн. км 2 . Остальная площадь падает на ледники, водоемы, строения и скальные поверхности.

На нынешней стадии развития Земли материковая и океанская части биосферы различны. В океане почти нет высших растений. Площадь литорали, на которой растут прикрепленные ко дну растения, составляет всего 2% от общей площади дна океана. Основу жизни в океане составляют микроскопические водоросли фитопланктона и микроскопические травоядные организмы зоопланктона. Те и другие в воде крайне рассеяны, концентрация жизни в сотни тысяч раз меньше, чем на суше. Прежние завышенные оценки биомассы океанов пересмотрены. По новым подсчетам она по общей массе в 525 раз меньше, чем на суше. По данным В. Г. Богорова (1969) и А. М. Рябчикова (1972), ежегодная продуктивность биомассы на Земле составляет 177 млрд. т сухого вещества, из них 122 млрд. т дает растительность суши и 55 млрд. т фитопланктон моря. Хотя объем биомассы в море много меньше, чем на суше, продуктивность ее в 328 раз (А. М. Рябчиков) выше материковой, объясняется это быстротой смены поколений водорослей.

Биомасса суши состоит из фитомассы, зоомассы, включающей и насекомых, и биомассы бактерий и грибов. Суммарная масса почвенных организмов достигает порядка 1-10 9 т, а в составе зоомассы основная доля (до 99%) приходится на беспозвоночные организмы.
В целом же в биомассе суши абсолютно преобладает вещество растений, главным образом древесных: на фотомассу приходится 97-98%, на зоомассу 1-3% по массе (Ковда, 1971).
Хотя масса живого вещества и не велика в сравнении с объемом лито-, гидро- и даже атмосферы, роль ее в природе несравненно больше ее удельного веса. Например, на 1 га, занятом растениями, площадь их листьев может достигать 80 га, прям бизнес можно делать, а площадь хлорофилльных зерен, т. е. активно работающей поверхности, еще в сотни раз больше. Площадь хлорофилльных зерен всех зеленых растений на Земле приблизительно равна площади Юпитера.

Подчеркнем еще раз, что фотосинтез - весьма совершенная форма аккумуляции энергии, количество которой выражается числом 12,6-10 21 Дж (3-1021 кал). Эта энергия производит на Земле ежегодно около 5,8-10 11 т органического вещества, в том числе 3,1 ∙ 10 10 т на суше. Из этого числа приходится на долю лесов 2,04-10 10 , степей, болот и лугов 0,38-10 10 , пустынь 0,1 ∙ 10 10 и культурной растительности 0.58-10 10 т (Ковла, 1971).

В 1 г почвы хлопкового поля содержится 50-100 тыс. микроорганизмов, что в переводе на гектар составляет несколько тонн (Ковда, 1969). Некоторые почвы на 1 га содержат до 10 млрд. круглых червей, до 3 млн. дождевых червей и 20 млн. насекомых.

Одно из основных предположений гетеротрофной гипотезы заключается в том, что возникновению жизни предшествовало накопление органических молекул. Сегодня мы называем органическими молекулами все те молекулы, которые содержат углерод и водород. Мы называем молекулы органическими еще и потому, что первоначально считалось, что соединения такого рода могут синтезироваться только живыми организмами.

Однако еще в 1828г. химики научились синтезировать мочевину из неорганических веществ. Мочевина- это органическое соединение, которое у многих животных выделяется в моче. Живые организмы считались единственным источником мочевины до тех пор, пока ее не удалось синтезировать в лаборатории. Лабораторные условия, в которых химиками были получены органические соединения, видимо, в какой-то степени имитируют условия среды на земле в ранний период ее существования. Эти условия могли, по мнению авторов гетеротрофной гипотезы, привести к образованию органических соединений из атомов кислорода, водорода, азота и углерода.

Лауреат Нобелевской премии Гарольд Юри, работающий в Чикагском университете, заинтересовался вопросами эволюции химических соединений на Земле в условиях раннего периода ее существования. Он обсуждал эту проблему с одним из своих студентов- Стенли Миллером. В мае 1953 г. Миллер опубликовал статью под названием «Образование аминокислот в условиях, близких к условиям, существовавшим на Земле в ранний период», в которой указывал, что А.И. Опарин высказывал впервые идею о том, что основа жизни- органические соединения образовались в тот период, когда в атмосфере Земли были метан, аммиак, вода и водород, а не двуокись углерода, азот, кислород и вода. Недавно эта идея получила подтверждения в роботах Юри и Бернала.

Для того чтобы проверить эту гипотезу, в специально созданном приборе через систему труб пропускалась смесь газов CH4, NH3, H2O и H2, и в определенный момент времени создавался электрический момент времени создавался электрический разряд. В полученной смеси определяли содержание аминокислот.

В сконструированном Миллером воздухонепроницаемом приборе, наполненном метаном, водородом и аммиаком, пропускали электрический разряд. Водяной пар поступал из специального приспособления, связанного с основной частью прибора. Пар, проходя через прибор, охлаждался и конденсировался в виде дождя. Таким образом, в лаборатории были довольно точно воспроизведены условия, существовавшие в атмосфере первобытной Земли. К ним относятся тепло, дождь и кратковременные вспышки света. Через неделю Миллер проанализировал газ, который находился в экспериментальных условиях. Он обнаружил, что образовавшаяся ранее бесцветная жидкость стала красной.

Химический анализ показал, что в жидкости появились некоторые соединения, которых не было в начале опыта. Атомы некоторых молекул газа рекомбинировали, образовывая новые и более сложные молекулы-органических молекул. Анализируя соединения, находящиеся в жидкости, Миллер обнаружил, что там образуются органические молекулы, известные под названием аминокислоты. Аминокислоты состоят из атомов углерода, водорода, кислорода и азота.

Каждый углеродный атом способен образовать четыре химические связи с другими атомами. Опыты Миллера указывают на то, что аналогичные процессы могли происходить в атмосфере Земли в ранний период ее существования. Эти опыты явились важным подтверждением гетеротрофной гипотезы.


Самое обсуждаемое
Когда играешь в шахматы с лениным Когда играешь в шахматы с лениным
Батюшков, Константин Николаевич – биография Батюшков, Константин Николаевич – биография
Определение угла между прямыми линиями Определение угла между прямыми линиями


top