Что такое косинус и как его найти. Синус, косинус, тангенс: что такое? Как найти синус, косинус и тангенс? можно познакомиться с функциями и производными

Что такое косинус и как его найти. Синус, косинус, тангенс: что такое? Как найти синус, косинус и тангенс? можно познакомиться с функциями и производными

Примеры:

\(\cos{⁡30^°}=\)\(\frac{\sqrt{3}}{2}\)
\(\cos⁡\)\(\frac{π}{3}\) \(=\)\(\frac{1}{2}\)
\(\cos⁡2=-0,416…\)

Аргумент и значение

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника - он равен отношению прилежащего катета к гипотенузе.

Пример :

1) Пусть дан угол и нужно определить косинус этого угла.


2) Достроим на этом угле любой прямоугольный треугольник.


3) Измерив, нужные стороны, можем вычислить косинус.



Косинус острого угла больше \(0\) и меньше \(1\)

Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.

Косинус числа

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с : \(\frac{π}{2}\) , \(\frac{3π}{4}\) , \(-2π\).

Например, для числа \(\frac{π}{6}\) - косинус будет равен \(\frac{\sqrt{3}}{2}\) . А для числа \(-\)\(\frac{3π}{4}\) он будет равен \(-\)\(\frac{\sqrt{2}}{2}\) (приблизительно \(-0,71\)).


Косинус для других часто встречающихся в практике чисел смотри в .

Значение косинуса всегда лежит в пределах от \(-1\) до \(1\). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем \(360°\) (полный оборот). Как это делать - проще один раз увидеть, чем \(100\) раз услышать, поэтому смотрите картинку.


Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в \(150°\). Совмещаем точку О с центром окружности, а сторону ОК – с осью \(x\). После этого откладываем \(150°\) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в \(-60°\) (угол КОВ ), делаем также, но \(60°\) откладываем по часовой стрелке.


И, наконец, угол больше \(360°\) (угол КОС ) - всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол \(405°\) отложен как \(360° + 45°\).


Несложно догадаться, что для откладывания угла, например, в \(960°\), надо сделать уже два оборота (\(360°+360°+240°\)), а для угла в \(2640°\) - целых семь.


Стоит запомнить, что:

Косинус прямого угла равен нулю. Косинус тупого угла - отрицателен.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по числовой (тригонометрической) окружности:

Там, где значения на оси от \(0\) до \(1\), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
- там, где значения на оси от \(0\) до \(-1\), косинус будет иметь знак минус (II и III четверти – фиолетовая область).



Пример. Определите знак \(\cos 1\).
Решение: Найдем \(1\) на тригонометрическом круге. Будем отталкиваться от того, что \(π=3,14\). Значит единица, примерно, в три раза ближе к нулю (точке «старта»).


Если провести перпендикуляр к оси косинусов, то станет очевидно, что \(\cos⁡1\) – положителен.
Ответ: плюс.

Связь с другими тригонометрическими функциями:

- того же угла (или числа): основным тригонометрическим тождеством \(\sin^2⁡x+\cos^2⁡x=1\)
- того же угла (или числа): формулой \(1+tg^2⁡x=\)\(\frac{1}{\cos^2⁡x}\)
- и синусом того же угла (или числа): формулой \(ctgx=\)\(\frac{\cos{x}}{\sin⁡x}\)
Другие наиболее часто применяемые формулы смотри .

Функция \(y=\cos{x}\)

Если отложить по оси \(x\) углы в радианах, а по оси \(y\) - соответствующие этим углам значения косинуса, мы получим следующий график:


График данной называется и обладает следующими свойствами:

Область определения – любое значение икса: \(D(\cos{⁡x})=R\)
- область значений – от \(-1\) до \(1\) включительно: \(E(\cos{x})=[-1;1]\)
- четная: \(\cos⁡(-x)=\cos{x}\)
- периодическая с периодом \(2π\): \(\cos⁡(x+2π)=\cos{x}\)
- точки пересечения с осями координат:
ось абсцисс: \((\)\(\frac{π}{2}\) \(+πn\),\(;0)\), где \(n ϵ Z\)
ось ординат: \((0;1)\)
- промежутки знакопостоянства:
функция положительна на интервалах: \((-\)\(\frac{π}{2}\) \(+2πn;\) \(\frac{π}{2}\) \(+2πn)\), где \(n ϵ Z\)
функция отрицательна на интервалах: \((\)\(\frac{π}{2}\) \(+2πn;\)\(\frac{3π}{2}\) \(+2πn)\), где \(n ϵ Z\)
- промежутки возрастания и убывания:
функция возрастает на интервалах: \((π+2πn;2π+2πn)\), где \(n ϵ Z\)
функция убывает на интервалах: \((2πn;π+2πn)\), где \(n ϵ Z\)
- максимумы и минимумы функции:
функция имеет максимальное значение \(y=1\) в точках \(x=2πn\), где \(n ϵ Z\)
функция имеет минимальное значение \(y=-1\) в точках \(x=π+2πn\), где \(n ϵ Z\).

Косинус – это всем известная тригонометрическая функция, которая к тому же является еще и одной из основных функций тригонометрии. Косинус угла в треугольнике прямоугольного типа - это отношение прилежащего катета треугольника к гипотенузе треугольника. Наиболее часто определение косинуса связывают с треугольником именно прямоугольного типа. Но бывает и так, что тот угол, для которого необходимо вычислить в треугольнике прямоугольного типа косинус, в этом самом треугольнике прямоугольного типа не расположен. Что же тогда делать? Как найти косинус угла треугольника?

Если требуется вычислить косинус угла именно в треугольнике прямоугольного типа, то тут все очень просто. Нужно лишь вспомнить определение косинуса, в котором и кроется решение данной задачи. Просто требуется найти то самое отношение между прилежащим катетом, а также гипотенузой треугольника. Действительно здесь нетрудно выразить косинус угла. Формула выглядит следующим образом: - cosα = a/c, здесь "а" – это длина катета, а сторона "с", соответственно, длина гипотенузы. К примеру, косинус острого угла прямоугольного треугольника можно найти по этой формуле.

Если Вас интересует, чему равен косинус угла в произвольном треугольнике, то на помощь приходит теорема косинусов, которой и стоит воспользоваться в подобных случаях. Теорема косинусов гласит о том, что квадрат стороны треугольника априори равен сумме квадратов остальных сторон того же треугольника, но уже без удвоенного произведения этих сторон на косинус того угла, который расположен между ними.

  1. Если в треугольнике необходимо найти косинус острого угла, то нужно воспользоваться такой формулой: cosα = (a 2 + b 2 – c 2)/(2ab).
  2. Если же в треугольнике необходимо найти косинус тупого угла, то нужно воспользоваться такой формулой: cosα = (с 2 – a 2 – b 2)/(2ab). Обозначения в формуле – а и b – это длины сторон, которые являются прилежащими к искомому углу, с – это длинна стороны, которая является противолежащей искомому углу.

Также косинус угла можно вычислять при помощи теоремы синусов. Она гласит, что все стороны треугольника пропорциональны синусам углов, которые противоположны. При помощи теоремы синусов можно вычислять остальные элементы треугольника, имея сведения лишь о двух сторонах и угле, который является противолежащим одно стороне, или же по двум углам и одной стороне. Рассмотри на примере. Условия задачи: а=1; b=2; с=3. Угол, который противоположен стороне "А", обозначаем - α, тогда, согласно формулам, имеем: соsα=(b²+c²-а²)/(2*b*c)=(2²+3²-1²)/(2*2*3)=(4+9-1)/12=12/12=1. Ответ: 1.

Если же косинус угла нужно вычислить не в треугольнике, а в какой-то другой произвольной геометрической фигуре, то тут все становится немного сложнее. Величину угла вначале нужно определить в радианах или же градусах, а уже потом вычислять косинус по этой величине. Косинус по числовому значению определяется при помощи таблиц Брадиса, инженерных калькуляторов или специальных математических приложений.

Специальные математические приложения могут иметь такие функции, как автоматический подсчет косинусов углов в той или иной фигуре. Прелесть таких приложений заключается в том, что они дают правильный ответ, а пользователь не затрачивает свое время на решение порой довольно сложных задач. С другой стороны, при постоянном использовании исключительно приложений для решения задач, теряются все навыки по работе с решением математических задач на нахождение косинусов углов в треугольниках, а также других произвольных фигурах.

Косинус – одна из основных тригонометрических функций. Косинус ом острого угла в прямоугольном треугольнике именуется отношение прилежащего катета к гипотенузе. Определение косинуса привязано к прямоугольному треугольнику, но нередко угол, косинус которого нужно определить, в прямоугольном треугольнике не размещен. Как обнаружить значение косинуса всякого угла ?

Инструкция

1. угла в прямоугольном треугольнике, нужно воспользоваться определением косинуса и обнаружить отношение прилежащего катета к гипотенузе:cos? = a/c, где а – длина катета, с – длина гипотенузы.

2. Если нужно обнаружить косинус угла в произвольном треугольнике, нужно воспользоваться теоремой косинусов:если угол острый: cos? = (a2 + b2 – c2)/(2ab);если угол тупой: cos? = (с2 – a2 – b2)/(2ab), где а, b – длины сторон прилежащих к углу, с – длина стороны противолежащей углу.

3. Если нужно обнаружить косинус угла в произвольной геометрической фигуре, нужно определить величину угла в градусах либо радианах, а косинус угла обнаружить по его величине с поддержкой инженерного калькулятора, таблиц Брадиса либо всякого иного математического приложения.

Косинус – это базовая тригонометрическая функция угла. Знание определять косинус сгодится в векторной алгебре при определении проекций векторов на разные оси.

Инструкция

1. Косинус ом угла называют отношение прилежащего к углу катета к гипотенузе. Значит, в прямоугольном треугольнике ABC (ABC – прямой угол) косинус угла BAC равен отношению AB к AC. Для угла ACB: cos ACB = BC/AC.

2. Но не неизменно угол принадлежит треугольнику, помимо того бывают тупые углы, которые заведомо не могут быть в составе прямоугольного треугольника. Разглядим случай, когда угол задан лучами. Дабы в этом случае вычислить косинус угла, поступают дальнейшим образом. К углу привязывают систему координат, предисловие координат считается от вершины угла, ось X идет по одной стороне угла, ось Y строится перпендикулярно оси X. После этого строят окружность единичного радиуса с центром в вершине угла. Вторая сторона угла пересекает окружность в точке A. Опустите перпендикуляр из точки A на ось X, обозначьте точку пересечения перпендикуляра с осью Ax. Тогда получится прямоугольный треугольник AAxO, и косинус угла равен AAx/AO. От того что окружность единичного радиуса, то AO = 1 и косинус угла равен примитивно AAx.

3. В случае тупого угла проводят все те же самые построения. Косинус тупого угла негативный, но он также равен Ax.

Видео по теме

Обратите внимание!
Косинусы некоторых углов представлены в таблицах Брадиса.

Такие представления как синус, косинус, тангенс вряд ли кому-то зачастую встречаются в повседневной жизни. Впрочем, если вы сели решать математические задачки с сыном-старшеклассником, хорошо было бы припомнить, что же это за представления, и как обнаружить, скажем, косинус.

Инструкция

Видео по теме

Частенько в геометрических (тригонометрических) задачах требуется обнаружить косинус угла в треугольнике , так как косинус угла разрешает однозначно определить величину самого угла.

Инструкция

1. Дабы обнаружить косинус угла в треугольнике , длины сторон которого знамениты, дозволено воспользоваться теоремой косинус ов. Согласно этой теореме, квадрат длины стороны произвольного треугольника равняется сумме квадратов 2-х его других сторон без удвоенного произведения длин этих сторон на косинус угла между ними:а?=b?+c?-2*b*c*соs?, где:а, b, с – стороны треугольника (вернее их длины),? – угол, противоположный стороне а (его величина).Из приведенного равенства легко находится соs?:соs?=(b?+c?-а?)/(2*b*c)Пример 1.Имеется треугольник со сторонами а, b, с, равными 3, 4, 5 мм, соответственно.Обнаружить косинус угла, заключенного между крупными сторонами.Решение:По условию задачи имеем:а=3,b=4,с=5.Обозначим противоположный стороне а угол через?, тогда, согласно выведенной выше формуле, имеем:соs?=(b?+c?-а?)/(2*b*c)=(4?+5?-3?)/(2*4*5)=(16+25-9)/40=32/40=0,8Ответ: 0,8.

2. Если треугольник прямоугольный, то для нахождения косинус а угла довольно знать длины каждого 2-х всяких сторон (косинус прямого угла равен 0).Пускай имеется прямоугольный треугольник со сторонами а, b, с, где с – гипотенуза.Разглядим все варианты:Пример 2.Обнаружить соs?, если знамениты длины сторон а и b (катеты треугольника)Воспользуемся добавочно теоремой Пифагора:c?=b?+а?,с=v(b?+а?)соs?=(b?+c?-а?)/(2*b*c)=(b?+b?+а?-а?)/(2*b*v(b?+а?))=(2*b?)/(2*b*v(b?+а?))=b/v(b?+а?)Дабы проверить правильность полученной формулы, подставим в нее значения из примера 1, т.е.а=3,b=4.Проделав элементарные вычисления, получаем:соs?=0,8.

3. Подобно находится косинус в прямоугольном треугольнике в остальных случаях:Пример 3.Знамениты а и с (гипотенуза и противолежащий катет), обнаружить соs?b?=с?-а?,b=v(c?-а?)соs?=(b?+c?-а?)/(2*b*c)=(с?-а?+с?-а?)/(2*с*v(с?-а?))=(2*с?-2*а?)/(2*с*v(с?-а?))=v(с?-а?)/с.Подставляя значения а=3 и с=5 из первого примера, получаем:соs?=0,8.

4. Пример 4.Вестимы b и с (гипотенуза и прилежащий катет).Обнаружить соs?Произведя схожие (показанные в примерах 2 и 3 реформирования), получим, что в этом случае косинус в треугольнике вычисляется по дюже легкой формуле:соs?=b/с.Простота выведенной формулы объясняется элементарно: реально, прилежащий к углу? катет является проекцией гипотенузы, следственно его длина равна длине гипотенузы, умноженной на соs?.Подставляя значения b=4 и с=5 из первого примера, получим:соs?=0,8Значит, все наши формулы правильны.

Совет 5: Как обнаружить острый угол в прямоугольном треугольнике

Прямоугольный треугольник, видимо, – одна из самых знаменитых, с исторической точки зрения, геометрических фигур. Пифагоровым “штанам” конкуренцию может составить лишь “Эврика!” Архимеда.

Вам понадобится

  • – чертеж треугольника;
  • – линейка;
  • – транспортир.

Инструкция

1. Как водится, вершины углов треугольника обозначаются заглавными латинскими буквами (A, B, C), а противоположные им стороны маленькими латинскими буквами (a, b, c) либо по наименованиям вершин треугольника, образующих эту сторону (AC, BC, AB).

2. Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) неизменно будет 90 градусов, а остальные острыми, т.е. поменьше 90 градусов весь. Дабы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с поддержкой линейки стороны треугольника и определите крупнейшую. Она именуется гипотенуза (AB) и располагается наоборот прямого угла (C). Остальные две стороны образуют прямой угол и именуются катетами (AC, BC).

3. Когда определили, какой угол является острым, вы можете либо измерить величину угла при помощи транспортира, либо рассчитать с поддержкой математических формул.

4. Дабы определить величину угла с подмогой транспортира, совместите его вершину (обозначим ее буквой А) с особой отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Подметьте на полукруглой части транспортира точку, через которую проходит гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла необходимо выбирать меньшую, для тупого – крупную.

6. Полученное значение обнаружьте в справочных таблицах Брадиса и определите какому углу соответствует полученное числовое значение. Этим способом пользовались наши бабушки.

7. В наше время довольно взять калькулятор с функцией вычисления тригонометрических формул. Скажем, встроенный калькулятор Windows. Запустите приложение “Калькулятор”, в пункте меню “Вид” предпочтете пункт “Инженерный”. Вычислите синус желанного угла, скажем, sin (A) = BC/AB = 2/4 = 0.5

8. Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, после этого кликните по кнопке расчета функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится дальнейшая надпись: asind (0.5) = 30. Т.е. значение желанного угла – 30 градусов.

Теорема косинусов в математике почаще каждого применяется в том случае, когда нужно обнаружить третью сторону по углу и двум сторонам. Впрочем, изредка условие задачи поставлено напротив: требуется обнаружить угол при заданных 3 сторонах.

Инструкция

1. Представьте себе, что дан треугольник, у которого вестимы длины 2-х сторон и значение одного угла. Все углы этого треугольника не равны друг другу, а его стороны также являются разными по величине. Угол? лежит наоборот стороны треугольника, обозначенной, как AB, которая является основанием этой фигуры. Через данный угол, а также через оставшиеся стороны AC и BC дозволено обнаружить ту сторону треугольника, которая неведома, по теореме косинусов, выведя на ее основе представленную ниже формулу:a^2=b^2+c^2-2bc*cos?, где a=BC, b=AB, c=ACТеорему косинусов напротив называют обобщенной теоремой Пифагора.

2. Сейчас представьте себе, что даны все три стороны фигуры, но при этом ее угол? неведом. Зная, что формула имеет вид a^2=b^2+c^2-2bc*cos?, преобразуйте данное выражение таким образом, дабы желанной величиной стал угол?: b^2+c^2=2bc*cos?+a^2.После этого приведите показанное выше уравнение к несколько другому виду: b^2+c^2-a^2=2bc*cos?.После этого данное выражение следует преобразовать в представленное ниже: cos?=?b^2+c^2-a^2/2bc.Осталось подставить в формулу числа и осуществить вычисления.

3. Дабы обнаружить косинус угла треугольника, обозначенного как?, его нужно выразить через обратную тригонометрическую функцию, называемую арккосинусом. Арккосинусом числа m именуется такое значение угла?, для которого косинус угла? равен m. Функция y=arccos m является убывающей. Представьте себе, скажем, что косинус угла? равен одной 2-й. Тогда угол? может быть определен через арккосинус дальнейшим образом:? = arccos, m = arccos 1/2 = 60°, где m = 1/2.Аналогичным образом дозволено обнаружить и остальные углы треугольника при 2-х других неведомых его сторонах.

4. В случае, если углы представлены в радианах, переведите их в градусы, применяя следующее соотношение:? радиан = 180 градусов.Помните, что подавляющее множество инженерных калькуляторов снабжено вероятностью переключения единиц измерения углов.

Синус и косинус – две тригонометрические функции, которые называют «прямыми». Именно их доводится вычислять почаще других и для решения этой задачи сегодня всякий из нас имеет большой выбор вариантов. Ниже приведено несколько особенно примитивных методов.

Инструкция

1. Используйте транспортир, карандаш и лист бумаги, если других средств вычисления нет под рукой. Одно из определений косинуса дается через острые углы в прямоугольном треугольнике – его значение равно соотношению между длиной катета, лежащего наоборот этого угла и длиной гипотенузы. Нарисуйте треугольник, в котором один из углов будет прямым (90°), а иной равен углу, косинус которого требуется вычислить. Длина сторон при этом не имеет значения – нарисуйте их такими, которые вам комфортнее измерять. Измерьте длину надобного катета и гипотенузы и поделите первое на второе любым комфортным методом.

2. Воспользуйтесь вероятностью определять значения тригонометрических функций с поддержкой калькулятора, встроенного в поисковую систему Nigma, если у вас есть доступ в интернет. Скажем, если требуется вычислить косинус угла в 20°, то загрузив основную страницу обслуживания http://nigma.ru наберите в поле поискового запроса «косинус 20 градусов» и нажмите кнопку «Обнаружить!». Дозволено слово «градусов» опустить, а слово «косинус» заменить на cos – в любом случае поисковик покажет итог с точностью до 15 знаков позже запятой (0,939692620785908).

3. Откройте стандартную программу-калькулятор, устанавливаемую совместно с операционной системой Windows, если нет доступа к интернету. Сделать это дозволено, скажем, единовременно нажав клавиши win и r, после этого введя команду calc и щелкнув по кнопке OK. Для вычисления тригонометрических функций тут предуготовлен интерфейс, с наименованием «инженерный» либо «ученый» (в зависимости от версии ОС) – выберите необходимый пункт в разделе «Вид» меню калькулятора. Позже этого введите величину угла в градусах и щелкните по кнопке cos в интерфейсе программы.

Видео по теме

Совет 8: Как определить углы в прямоугольном треугольнике

Прямоугольный треугольник характеризуется определенными соотношениями между углами и сторонами. Зная значения одних из них, дозволено вычислять другие. Для этого применяются формулы, основанные, в свою очередь, на аксиомах и теоремах геометрии.

Инструкция

1. Из самого наименования прямоугольного треугольника ясно, что один из его углов является прямым. Самостоятельно от того, является прямоугольный треугольник равнобедренным либо нет, в нем неизменно имеется один угол, равный 90 градусам. Если дан прямоугольный треугольник, являющийся единовременно и равнобедренным, то, исходя из того, что в фигуре имеется прямой угол, обнаружьте два угла при его основании. Эти углы равны между собой, следственно всякий из них имеет значение, равное:?=180°- 90°/2=45°

2. Помимо рассмотренного выше, допустим также иной случай, когда треугольник является прямоугольным, но не является равнобедренным. Во многих задачах угол треугольника равен 30°, а иной 60°, от того что сумма всех углов в треугольнике должна быть равной 180°. Если дана гипотенуза прямоугольного треугольника и его катет, то угол дозволено обнаружить из соответствия этих 2-х сторон:sin ?=a/c, где a – катет, противолежащий к гипотенузе треугольника, с – гипотенуза треугольникаСоответственно, ?=arcsin(a/c)Также угол дозволено обнаружить и по формуле нахождения косинуса:cos ?=b/c, где b – прилежащий катет к гипотенузе треугольника

3. Если вестимы только два катета, то угол? дозволено обнаружить по формуле тангенса. Тангенс этого угла равен отношению противолежащего катета к прилежащему:tg ?=a/bИз этого следует, что?=arctg(a/b)Когда даны прямой угол и один из углов, обнаруженных вышеуказанным методом, 2-й находится дальнейшим образом:?=180°-(90°+?)

Словом «косинус» называют одну из тригонометрических функций, которая при написании обозначается как cos. Особенно зачастую иметь с ней дело доводится при решении задач на нахождение параметров верных фигур в геометрии. В таких задачах величины углов в вершинах многоугольников обозначаются, как водится, прописными буквами греческого алфавита. Если речь при этом идет о прямоугольном треугольнике, то по одной этой букве изредка дозволено узнать, тот, что из углов имеется в виду.

Инструкция

1. Если величина угла, обозначенная буквой?, знаменита из условий задачи, то для нахождения значения, соответствующего косинусу альфа, дозволено воспользоваться стандартным калькулятором ОС Windows. Запускается он через основное меню операционной системы – нажмите кнопку Win, раскройте в меню раздел «Все программы», перейдите в подраздел «Типовые», а после этого в секцию «Служебные». Там и обнаружите строку «Калькулятор» – кликните ее для запуска приложения.

2. Нажмите сочетание клавиш Alt + 2, дабы переключить интерфейс приложения в «инженерный» (в иных версиях ОС – «ученый») вариант. После этого введите величину угла? и щелкните указателем мыши кнопку, обозначенную буквами cos – калькулятор произведет вычисление функции и отобразит итог.

3. Если вычислить косинус угла? необходимо в прямоугольном треугольнике, то, вероятно, это один из 2-х острых углов. При верном обозначении сторон такого треугольника гипотенузу (самую длинную сторону) обозначают буквой c, а лежащий наоборот нее прямой угол – греческой буквой?. Две другие стороны (катеты) обозначают буквами a и b, а лежащие наоборот них острые углы – ? и?. Для величин острых углов прямоугольного треугольника существуют соотношения, которые дозволят вычислять косинус, даже не зная величины самого угла.

4. Если в прямоугольном треугольнике вестимы длины сторон b (катета, прилежащего к углу?) и c (гипотенузы), то для вычисления косинуса? поделите длину этого катета на длину гипотенузы: cos(?)=b/c.

5. В произвольном треугольнике значение косинуса угла? незнакомой величины дозволено вычислить, если в условиях даны длины всех сторон. Для этого вначале возведите в квадрат длины всех сторон, потом полученные значения для 2-х сторон, прилежащих к углу? сложите, а полученное значение для противолежащей стороны отнимите от итога. После этого полученную величину поделите на удвоенное произведение длин прилегающих к углу? сторон – это и будет желанный косинус угла?: cos(?)=(b?+c?-a?)/(2*b*c). Это решение вытекает из теоремы косинусов.

Полезный совет
Математическое обозначение косинуса – cos. Значение косинуса не может быть огромнее 1 и поменьше -1.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

Не существует;

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

Не существует

Не существует

Не существует

Не существует

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

Вот, к примеру, перед нами такая окружность:

Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

Тогда имеем, что для точки координата.

По той же логике находим значение координаты y для точки. Таким образом,

Итак, в общем виде координаты точек определяются по формулам:

Координаты центра окружности,

Радиус окружности,

Угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

Возникли проблемы в нахождении координат точки на окружности?

Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

1.

Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

2. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

Синус и косинус - это табличные значения. Вспоминаем их значения и получаем:

Таким образом, искомая точка имеет координаты.

3. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

Таким образом, искомая точка имеет координаты.

4.

Угол поворота радиуса вектора (по условию,)

Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

Как можно заметить, значение, то есть положительно, а значение, то есть - отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

Подставим полученные значения в нашу формулу и найдём координаты:

Таким образом, искомая точка имеет координаты.

5. Для решения данной задачи воспользуемся формулами в общем виде, где

Координаты центра окружности (в нашем примере,

Радиус окружности (по условию,)

Угол поворота радиуса вектора (по условию,).

Подставим все значения в формулу и получим:

и - табличные значения. Вспоминаем и подставляем их в формулу:

Таким образом, искомая точка имеет координаты.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Одним из разделов математики, с которыми школьники справляются с наибольшими трудностями, является тригонометрия. Неудивительно: для того чтобы свободно овладеть этой областью знаний, требуется наличие пространственного мышления, умение находить синусы, косинусы, тангенсы, котангенсы по формулам, упрощать выражения, уметь применять в вычислениях число пи. Помимо этого, нужно уметь применять тригонометрию при доказательстве теорем, а это требует либо развитой математической памяти, либо умения выводить непростые логические цепочки.

Истоки тригонометрии

Знакомство с данной наукой следует начать с определения синуса, косинуса и тангенса угла, однако прежде необходимо разобраться, чем вообще занимается тригонометрия.

Исторически главным объектом исследования данного раздела математической науки были прямоугольные треугольники. Наличие угла в 90 градусов дает возможность осуществлять различные операции, позволяющие по двум сторонам и одному углу либо по двум углам и одной стороне определять значения всех параметров рассматриваемой фигуры. В прошлом люди заметили эту закономерность и стали активно ею пользоваться при строительстве зданий, навигации, в астрономии и даже в искусстве.

Начальный этап

Первоначально люди рассуждали о взаимоотношении углов и сторон исключительно на примере прямоугольных треугольников. Затем были открыты особые формулы, позволившие расширить границы употребления в повседневной жизни данного раздела математики.

Изучение тригонометрии в школе сегодня начинается с прямоугольных треугольников, после чего полученные знания используются учениками в физике и решении абстрактных тригонометрических уравнений, работа с которыми начинается в старших классах.

Сферическая тригонометрия

Позже, когда наука вышла на следующий уровень развития, формулы с синусом, косинусом, тангенсом, котангенсом стали использоваться в сферической геометрии, где действуют иные правила, а сумма углов в треугольнике всегда больше 180 градусов. Данный раздел не изучается в школе, однако знать о его существовании необходимо как минимум потому, что земная поверхность, да и поверхность любой другой планеты, является выпуклой, а значит, любая разметка поверхности будет в трёхмерном пространстве «дугообразной».

Возьмите глобус и нитку. Приложите нитку к двум любым точкам на глобусе, чтобы она оказалась натянутой. Обратите внимание - она обрела форму дуги. С такими формами и имеет дело сферическая геометрия, применяющаяся в геодезии, астрономии и других теоретических и прикладных областях.

Прямоугольный треугольник

Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.

Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза - это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.

Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.

Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.

Определение

Наконец, твердо понимая геометрическую базу, можно обратиться к определению синуса, косинуса и тангенса угла.

Синусом угла называется отношение противолежащего катета (т. е. стороны, располагающейся напротив нужного угла) к гипотенузе. Косинусом угла называется отношение прилежащего катета к гипотенузе.

Запомните, что ни синус, ни косинус не может быть больше единицы! Почему? Потому что гипотенуза - это по умолчанию самая длинная Каким бы длинным ни был катет, он будет короче гипотенузы, а значит, их отношение всегда будет меньше единицы. Таким образом, если у вас в ответе к задаче получился синус или косинус со значением, большим, чем 1, ищите ошибку в расчётах или рассуждениях. Этот ответ однозначно неверен.

Наконец, тангенсом угла называется отношение противолежащей стороны к прилежащей. Тот же самый результат даст деление синуса на косинус. Посмотрите: в соответствии с формулой мы делим длину стороны на гипотенузу, после чего делим на длину второй стороны и умножаем на гипотенузу. Таким образом, мы получаем то же самое соотношение, что и в определении тангенса.

Котангенс, соответственно, представляет собой отношение прилежащей к углу стороны к противолежащей. Тот же результат мы получим, разделив единицу на тангенс.

Итак, мы рассмотрели определения, что такое синус, косинус, тангенс и котангенс, и можем заняться формулами.

Простейшие формулы

В тригонометрии не обойтись без формул - как найти синус, косинус, тангенс, котангенс без них? А ведь именно это требуется при решении задач.

Первая формула, которую необходимо знать, начиная изучать тригонометрию, говорит о том, что сумма квадратов синуса и косинуса угла равна единице. Данная формула является прямым следствием теоремы Пифагора, однако позволяет сэкономить время, если требуется узнать величину угла, а не стороны.

Многие учащиеся не могут запомнить вторую формулу, также очень популярную при решении школьных задач: сумма единицы и квадрата тангенса угла равна единице, деленной на квадрат косинуса угла. Присмотритесь: ведь это то же самое утверждение, что и в первой формуле, только обе стороны тождества были поделены на квадрат косинуса. Выходит, простая математическая операция делает тригонометрическую формулу совершенно неузнаваемой. Помните: зная, что такое синус, косинус, тангенс и котангенс, правила преобразования и несколько базовых формул вы в любой момент сможете сами вывести требуемые более сложные формулы на листе бумаги.

Формулы двойного угла и сложения аргументов

Ещё две формулы, которые требуется выучить, связаны со значениями синуса и косинуса при сумме и разности углов. Они представлены на рисунке ниже. Обратите внимание, что в первом случае оба раза перемножается синус и косинус, а во втором складывается попарное произведение синуса и косинуса.

Также существуют формулы, связанные с аргументами в виде двойного угла. Они полностью выводятся из предыдущих - в качестве тренировки попробуйте получить их самостоятельно, приняв угол альфа равным углу бета.

Наконец, обратите внимание, что формулы двойного угла можно преобразовать так, чтобы понизить степень синуса, косинуса, тангенса альфа.

Теоремы

Двумя основными теоремами в базовой тригонометрии являются теорема синусов и теорема косинусов. С помощью этих теорем вы легко сможете понять, как найти синус, косинус и тангенс, а значит, и площадь фигуры, и величину каждой стороны и т. д.

Теорема синусов утверждает, что в результате деления длины каждой из сторон треугольника на величину противолежащего угла мы получим одинаковое число. Более того, это число будет равно двум радиусам описанной окружности, т. е. окружности, содержащей все точки данного треугольника.

Теорема косинусов обобщает теорему Пифагора, проецируя её на любые треугольники. Оказывается, из суммы квадратов двух сторон вычесть их произведение, умноженное на двойной косинус смежного им угла - полученное значение окажется равно квадрату третьей стороны. Таким образом, теорема Пифагора оказывается частным случаем теоремы косинусов.

Ошибки по невнимательности

Даже зная, что такое синус, косинус и тангенс, легко совершить ошибку из-за рассеянности внимания или ошибки в простейших расчётах. Чтобы избежать таких ошибок, ознакомимся с наиболее популярными из них.

Во-первых, не следует преобразовывать обыкновенные дроби в десятичные до получения окончательного результата - можно и ответ оставить в виде обыкновенной дроби, если в условии не оговорено обратное. Такое преобразование нельзя назвать ошибкой, однако следует помнить, что на каждом этапе задачи могут появиться новые корни, которые по задумке автора должны сократиться. В этом случае вы напрасно потратите время на излишние математические операции. Особенно это актуально для таких значений, как корень из трёх или из двух, ведь они встречаются в задачах на каждом шагу. То же касается округлений «некрасивых» чисел.

Далее, обратите внимание, что к любому треугольнику применима теорема косинусов, но не теорема Пифагора! Если вы по ошибке забудете вычесть удвоенное произведение сторон, умноженное на косинус угла между ними, вы не только получите совершенно неверный результат, но и продемонстрируете полное непонимание предмета. Это хуже, чем ошибка по невнимательности.

В-третьих, не путайте значения для углов в 30 и 60 градусов для синусов, косинусов, тангенсов, котангенсов. Запомните эти значения, ведь синус 30 градусов равен косинусу 60, и наоборот. Их легко перепутать, вследствие чего вы неизбежно получите ошибочный результат.

Применение

Многие ученики не спешат приступать к изучению тригонометрии, поскольку не понимают её прикладного смысла. Что такое синус, косинус, тангенс для инженера или астронома? Это понятия, благодаря которым можно вычислить расстояние до далёких звёзд, предсказать падение метеорита, отправить исследовательский зонд на другую планету. Без них нельзя построить здание, спроектировать автомобиль, рассчитать нагрузку на поверхность или траекторию движения предмета. И это только самые очевидные примеры! Ведь тригонометрия в том или ином виде используется повсюду, начиная от музыки и заканчивая медициной.

В заключение

Итак, вы синус, косинус, тангенс. Вы можете использовать их в расчётах и успешно решать школьные задачи.

Вся суть тригонометрии сводится к тому, что по известным параметрам треугольника нужно вычислить неизвестные. Всего этих параметров шесть: длины трёх сторон и величины трёх углов. Всё различие в задачах заключается в том, что даются неодинаковые входные данные.

Как найти синус, косинус, тангенс исходя из известных длин катетов или гипотенузы, вы теперь знаете. Поскольку эти термины обозначают не что иное, как отношение, а отношение - это дробь, главной целью тригонометрической задачи становится нахождение корней обычного уравнения либо же системы уравнений. И здесь вам поможет обычная школьная математика.


Самое обсуждаемое
Правители Османской империи Правители Османской империи
«Сонет к форме» В. Брюсов. Анализ стихотворения сонет к форме брюсова Пускай мой друг разрезав том «Сонет к форме» В. Брюсов. Анализ стихотворения сонет к форме брюсова Пускай мой друг разрезав том
Армия Великобритании: полная и безоговорочная оптимизация Кто является главнокомандующим всех вооруженных сил великобритании Армия Великобритании: полная и безоговорочная оптимизация Кто является главнокомандующим всех вооруженных сил великобритании


top