Вычисление площадей через интеграл. Вычисление площадей плоских фигур с помощью интеграла

Вычисление площадей через интеграл. Вычисление площадей плоских фигур с помощью интеграла

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.

Таким образом, S(G) = ʃ а b f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х 3 ,
{у = 1.

Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ 0 2 (x 3 – 4x)dx|.

Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: S О A В D = S OABC – S ADBC .

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,

S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).

Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На этом уроке будем учиться вычислять площади плоских фигур , которые называются криволинейными трапециями .

Примеры таких фигур - на рисунке ниже.

С одной стороны, найти площадь плоской фигуры с помощью определённого интеграла предельно просто. Речь идёт о площади фигуры, которую сверху ограничивает некоторая кривая, снизу - ось абсцисс (Ox ), а слева и справа - некоторые прямые. Простота в том, что определённый интеграл функции, которой задана кривая, и есть площадь такой фигуры (криволинейной трапеции).

Для вычисления площади фигуры нам понадобятся:

  1. Определённый интеграл от функции, задающей кривую , которая ограничивает криволинейную трапецию сверху. И здесь возникает первый существенный нюанс: криволинейная трапеция может быть ограничена кривой не только сверху, но и снизу . Как действовать в этом случае? Просто, но это важно запомнить: интеграл в этом случае берётся со знаком минус .
  2. Пределы интегрирования a и b , которые находим из уравнений прямых, ограничивающих фигуру слева и справа: x = a , x = b , где a и b - числа.

Отдельно ещё о некоторых нюансах .

Кривая, которая ограничивает криволинейную трапецию сверху (или снизу) должна быть графиком непрерывной и неотрицательной функции y = f (x ) .

Значения "икса" должны принадлежать отрезку [a , b ] . То есть не учитываются такие, например, линии, как разрез гриба, у которого ножка вполне вписывается в этот отрезок, а шляпка намного шире.

Боковые отрезки могут вырождаться в точки . Если вы увидели такую фигуру на чертеже, это не должно вас смущать, так как эта точка всегда имеет своё значение на оси "иксов". А значит с пределами интегрирования всё в порядке.

Теперь можно переходить к формулам и вычислениям. Итак, площадь s криволинейной трапеции может быть вычислена по формуле

Если же f (x ) ≤ 0 (график функции расположен ниже оси Ox ), то площадь криволинейной трапеции может быть вычислена по формуле

Есть ещё случаи, когда и верхняя, и нижняя границы фигуры - функции, соответственно y = f (x ) и y = φ (x ) , то площадь такой фигуры вычисляется по формуле

. (3)

Решаем задачи вместе

Начнём со случаев, когда площадь фигуры может быть вычислена по формуле (1).

Пример 1. Ox ) и прямыми x = 1 , x = 3 .

Решение. Так как y = 1/x > 0 на отрезке , то площадь криволинейной трапеции находим по формуле (1):

.

Пример 2. Найти площадь фигуры, ограниченной графиком функции , прямой x = 1 и осью абсцисс (Ox ).

Решение. Результат применения формулы (1):

Если то s = 1/2 ; если то s = 1/3 , и т.д.

Пример 3. Найти площадь фигуры, ограниченной графиком функции , осью абсцисс (Ox ) и прямой x = 4 .

Решение. Фигура, соответствующая условию задачи - криволинейная трапеция, у которой левый отрезок выродился в точку. Пределами интегрирования служат 0 и 4. Поскольку , по формуле (1) находим площадь криволинейной трапеции:

.

Пример 4. Найти площадь фигуры, ограниченной линиями , , и находящейся в 1-й четверти.

Решение. Чтобы воспользоваться формулой (1), представим площадь фигуры, заданной условиями примера, в виде суммы площадей треугольника OAB и криволинейной трапеции ABC . При вычислении площади треугольника OAB пределами интегрирования служат абсциссы точек O и A , а для фигуры ABC - абсциссы точек A и C (A является точкой пересечения прямой OA и параболы, а C - точкой пересечения параболы с осью Ox ). Решая совместно (как систему) уравнения прямой и параболы, получим (абсциссу точки A ) и (абсциссу другой точки пересечения прямой и параболы, которая для решения не нужна). Аналогично получим , (абсциссы точек C и D ). Теперь у нас еть всё для нахождения площади фигуры. Находим:

Пример 5. Найти площадь криволинейной трапеции ACDB , если уравнение кривой CD и абсциссы A и B соответственно 1 и 2.

Решение. Выразим данное уравнение кривой через игрек: Площадь криволинейной трапеции находим по формуле (1):

.

Переходим к случаям, когда площадь фигуры может быть вычислена по формуле (2).

Пример 6. Найти площадь фигуры, ограниченной параболой и осью абсцисс (Ox ).

Решение. Данная фигура расположена ниже оси абсцисс. Поэтому для вычисления её площади воспользуемся формулой (2). Пределами интегрирования являются абсциссы и точек пересечения параболы с осью Ox . Следовательно,

Пример 7. Найти площадь, заключённую между осью абсцисс (Ox ) и двумя соседними волнами синусоиды.

Решение. Площадь данной фигуры можем найти по формуле (2):

.

Найдём отдельно каждое слагаемое:

.

.

Окончательно находим площадь:

.

Пример 8. Найти площадь фигуры, заключённой между параболой и кривой .

Решение. Выразим уравнения линий через игрек:

Площадь по формуле (2) получим как

,

где a и b - абсциссы точек A и B . Найдём их, решая совместно уравнения:

Окончательно находим площадь:

И, наконец, случаи, когда площадь фигуры может быть вычислена по формуле (3).

Пример 9. Найти площадь фигуры, заключённой между параболами и .

Вычислить площадь фигуры, ограниченной линиями .

Решение.

Находим точки пересечения заданных линий. Для этого решаем систему уравнений:

Для нахождения абсцисс точек пересечения заданных линий решаем уравнение:

Находим: x 1 = -2, x 2 = 4.

Итак, данные линии, представляющие собой параболу и прямую, пересекаются в точках A (-2; 0), B (4; 6).

Эти линии образуют замкнутую фигуру, площадь которой вычисляем по указанной выше формуле:

По формуле Ньютона-Лейбница находим:

Найти площадь области, ограниченной эллипсом .

Решение.

Из уравнения эллипса для I квадранта имеем . Отсюда по формуле получаем

Применим подстановку x = a sin t , dx = a cos t dt . Новые пределы интегрирования t = α и t = β определяются из уравнений 0 = a sin t , a = a sin t . Можно положить α = 0 и β = π /2.

Находим одну четвертую искомой площади

Отсюда S = πab .

Найти площадь фигуры, ограниченной линиями y = - x 2 + x + 4 и y = - x + 1.

Решение.

Найдем точки пересечения линий y = -x 2 + x + 4, y = -x + 1, приравнивая ординаты линий: -x 2 + x + 4 = -x + 1 или x 2 - 2x - 3 = 0. Находим корни x 1 = -1, x 2 = 3 и соответствующие им ординаты y 1 = 2, y 2 = -2.

По формуле площади фигуры получаем

Определить площадь, ограниченную параболой y = x 2 + 1 и прямой x + y = 3.

Решение.

Решая систему уравнений

находим абсциссы точек пересечения x 1 = -2 и x 2 = 1.

Полагая y 2 = 3 - x и y 1 = x 2 + 1, на основании формулы получаем

Вычислить площадь, заключенную внутри лемнискаты Бернулли r 2 = a 2 cos 2 φ .

Решение.

В полярной системе координат площадь фигуры, ограниченной дугой кривой r = f (φ ) и двумя полярными радиусами φ 1 = ʅ и φ 2 = ʆ , выразится интегралом

В силу симметрии кривой определяем сначала одну четвертую искомой площади

Следовательно, вся площадь равна S = a 2 .

Вычислить длину дуги астроиды x 2/3 + y 2/3 = a 2/3 .

Решение.

Запишем уравнение астроиды в виде

(x 1/3) 2 + (y 1/3) 2 = (a 1/3) 2 .

Положим x 1/3 = a 1/3 cos t , y 1/3 = a 1/3 sin t .

Отсюда получаем параметрические уравнения астроиды

x = a cos 3 t , y = a sin 3 t , (*)

где 0 ≤ t ≤ 2π .

Ввиду симметрии кривой (*) достаточно найти одну четвертую часть длины дуги L , соответствующую изменению параметра t от 0 до π /2.

Получаем

dx = -3a cos 2 t sin t dt , dy = 3a sin 2 t cos t dt .

Отсюда находим

Интегрируя полученное выражение в пределах от 0 до π /2, получаем

Отсюда L = 6a .

Найти площадь, ограниченную спиралью Архимеда r = и двумя радиусами-векторами, которые соответствуют полярным углам φ 1 и φ 2 (φ 1 < φ 2 ).

Решение.

Площадь, ограниченная кривой r = f (φ ) вычисляется по формуле , где α и β - пределы изменения полярного угла.

Таким образом, получаем

(*)

Из (*) следует, что площадь, ограниченная полярной осью и первым витком спирали Архимеда (φ 1 = 0; φ 2 = 2π ):

Аналогичным образом находим площадь, ограниченную полярной осью и вторым витком спирали Архимеда (φ 1 = 2π ; φ 2 = 4π ):

Искомая площадь равна разности этих площадей

Вычислить объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной параболами y = x 2 и x = y 2 .

Решение.

Решим систему уравнений

и получим x 1 = 0, x 2 = 1, y 1 = 0, y 2 = 1, откуда точки пересечения кривых O (0; 0), B (1; 1). Как видно на рисунке, искомый объем тела вращения равен разности двух объемов, образованных вращением вокруг оси Ox криволинейных трапеций OCBA и ODBA :

Вычислить площадь, ограниченную осью Ox и синусоидой y = sin x на отрезках: а) ; б) .

Решение.

а) На отрезке функция sin x сохраняет знак, и поэтому по формуле , полагая y = sin x , находим

б) На отрезке , функция sin x меняет знак. Для корректного решения задачи, необходимо отрезок разделить на два и [π , 2π ], в каждом из которых функция сохраняет знак.

По правилу знаков, на отрезке [π , 2π ] площадь берется со знаком минус.

В итоге, искомая площадь равна

Определить объем тела, ограниченного поверхностью, полученной от вращения эллипса вокруг большой оси a .

Решение.

Учитывая, что эллипс симметричен относительно осей координат, то достаточно найти объем, образованный вращением вокруг оси Ox площади OAB , равной одной четверти площади эллипса, и полученный результат удвоить.

Обозначим объем тела вращения через V x ; тогда на основании формулы имеем , где 0 и a - абсциссы точек B и A . Из уравнения эллипса находим . Отсюда

Таким образом, искомый объем равен . (При вращении эллипса вокруг малой оси b , объем тела равен )

Найти площадь, ограниченную параболами y 2 = 2 px и x 2 = 2 py .

Решение.

Сначала найдем координаты точек пересечения парабол, чтобы определить отрезок интегрирования. Преобразуя исходные уравнения, получаем и . Приравнивая эти значения, получим или x 4 - 8p 3 x = 0.

x 4 - 8p 3 x = x (x 3 - 8p 3) = x (x - 2p )(x 2 + 2px + 4p 2) = 0.

Находим корни уравнений:

Учитывая то факт, что точка A пересечения парабол находится в первой четверти, то пределы интегрирования x = 0 и x = 2p .

Искомую площадь находим по формуле

а)

Решение.

Первый и важнейший момент решения - построение чертежа .

Выполним чертеж:

Уравнение y=0 задает ось «иксов»;

- х=-2 и х=1 - прямые, параллельные оси Оу;

- у=х 2 +2 - парабола, ветви которой направлены вверх, с вершиной в точке (0;2).

Замечание. Для построения параболы достаточно найти точки ее пересечения с координатными осями, т.е. положив х=0 найти пересечение с осью Оу и решив соответствующее квадратное уравнение, найти пересечение с осью Ох .

Вершину параболы можно найти по формулам:

Можно построить линии и поточечно.

На отрезке [-2;1] график функции y=x 2 +2 расположен над осью Ox , поэтому:

Ответ: S =9 кв.ед.

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Что делать, если криволинейная трапеция расположена под осью Ох?

b) Вычислить площадь фигуры, ограниченной линиями y=-e x , x=1 и координатными осями.

Решение.

Выполним чертеж.

Если криволинейная трапеция полностью расположена под осью Ох , то её площадь можно найти по формуле:

Ответ: S=(e-1) кв.ед.»1,72 кв.ед.

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости.

с) Найти площадь плоской фигуры, ограниченной линиями у=2х-х 2 , у=-х.

Решение.

Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой Это можно сделать двумя способами. Первый способ - аналитический.

Решаем уравнение:

Значит, нижний предел интегрирования а=0 , верхний предел интегрирования b=3 .

Строим заданные линии: 1. Парабола - вершина в точке (1;1); пересечение с осью Ох - точки(0;0) и (0;2). 2. Прямая - биссектриса 2-го и 4-го координатных углов. А теперь Внимание! Если на отрезке [a;b ] некоторая непрерывная функция f(x) больше либо равна некоторой непрерывной функции g(x) , то площадь соответствующей фигуры можно найти по формуле: .


И не важно , где расположена фигура - над осью или под осью, а важно , какой график ВЫШЕ (относительно другого графика), а какой- НИЖЕ. В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Можно построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными).

Искомая фигура ограничена параболой сверху и прямой снизу.

На отрезке , по соответствующей формуле:

Ответ: S =4,5 кв.ед.

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, и гиперболу .

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл.

С точки зрения геометрии определенный интеграл - это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости кривую, располагающуюся выше оси (желающие могут выполнить чертёж), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения - построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом - параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):

На отрезке график функции расположен над осью , поэтому:

Ответ:

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение : Выполним чертеж:

Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:


В данном случае:

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение : Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ - аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .

Этим способом лучше, по возможности, не пользоваться .

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

А теперь рабочая формула : Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура - над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой - НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

Пример 4

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение : Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие - чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов.

Действительно :

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Как вычислить объем тела вращения с помощью определенного интеграла?

Представьте некоторую плоскую фигуру на координатной плоскости. Её площадь мы уже находили. Но, кроме того, данную фигуру можно ещё и вращать, причем вращать двумя способами:

Вокруг оси абсцисс ;

Вокруг оси ординат .

В данной статье будут разобраны оба случая. Особенно интересен второй способ вращения, он вызывает наибольшие затруднения, но на самом деле решение практически такое же, как и в более распространенном вращении вокруг оси абсцисс.

Начнем с наиболее популярной разновидности вращения.


Самое обсуждаемое
Презентация на тему трафальгарская площадь Презентация на тему английский язык трафальгарская площадь Презентация на тему трафальгарская площадь Презентация на тему английский язык трафальгарская площадь
Приукрашенное сообщение – искажения при передаче информации Что такое искаженная информация Приукрашенное сообщение – искажения при передаче информации Что такое искаженная информация
Народы и страны южной америки Общее население южной америки Народы и страны южной америки Общее население южной америки


top