Условие мейснера. Эффект мейснера и его практическое применение

Условие мейснера. Эффект мейснера и его практическое применение

Начало XX века в физике вполне можно назвать эпохой предельно низких температур. В 1908 году голландский физик Хейке Камерлинг-Оннес впервые получил жидкий гелий, имеющий температуру всего на 4,2° выше абсолютного нуля. А вскоре ему удалось достичь температуры менее одного кельвина! За эти достижения в 1913 году Камерлинг-Оннес был удостоен Нобелевской премии. Но он вовсе не гнался за рекордами, его интересовало, как вещества меняют свои свойства при столь низких температурах, — в частности, он изучал изменение электрического сопротивления металлов. И вот 8 апреля 1911 года произошло нечто невероятное: при температуре чуть ниже температуры кипения жидкого гелия электрическое сопротивление ртути внезапно исчезло. Нет, оно не просто стало очень малым, оно оказалось равным нулю (насколько это было возможно измерить)! Ни одна из существовавших на тот момент теорий ничего подобного не предсказывала и объяснить не могла. В следующем году подобное свойство было обнаружено у олова и свинца, причем последний проводил ток без сопротивления и при температурах даже чуть выше температуры кипения жидкого гелия. А к 1950−1960-м годам были открыты материалы NbTi и Nb 3 Sn, отличающиеся способностью сохранять сверхпроводящее состояние в мощных магнитных полях и при протекании больших токов. Увы, они все еще требуют охлаждения дорогим жидким гелием.

1. Установив «летающий вагон» с начинкой из сверхпроводника, с обкладками из пропитанной жидким азотом меламиновой губки и оболочкой из фольги на магнитный рельс через прокладку из пары деревянных линеек, заливаем в него жидкий азот, «вмораживая» магнитное поле в сверхпроводник.


2. Дождавшись охлаждения сверхпроводника до температуры меньше -180°С, аккуратно вынимаем из-под него линейки. «Вагон» стабильно парит, даже если мы расположили его не совсем по центру рельса.

Следующее великое открытие в области сверхпроводимости произошло в 1986 году: Йоханнес Георг Беднорц и Карл Александр Мюллер обнаружили, что совместный оксид меди-бария-лантана обладает сверхпроводимостью при очень высокой (по сравнению с температурой кипения жидкого гелия) температуре — 35 К. Уже в следующем году, заменив лантан на иттрий, удалось достичь сверхпроводимости при температуре 93 К. Конечно, по бытовым меркам это все еще довольно низкие температуры, -180°С, но главное, что они выше порога в 77 К — температуры кипения дешевого жидкого азота. Кроме огромной по меркам обычных сверхпроводников критической температуры, для вещества YBa2Cu3O7-x (0 ≤ x ≤ 0,65) и ряда других купратов достижимы необычайно высокие значения критического магнитного поля и плотности тока. Такое замечательное сочетание параметров не только позволило куда шире применять сверхпроводники в технике, но и сделало возможными множество интересных и зрелищных опытов, которые можно проделать даже в домашних условиях.


Нам не удалось зафиксировать никакого падения напряжения при пропускании через сверхпроводник тока более 5 А, что говорит о нулевом электрическом сопротивлении. Ну, по крайней мере, о сопротивлении меньше 20 мкОм — минимума, который можно зафиксировать нашим прибором.

Какой выбрать

Для начала нужно раздобыть подходящий сверхпроводник. Открыватели высокотемпературной сверхпроводимости запекали смесь оксидов в специальной печи, но для простых опытов мы рекомендуем купить готовые сверхпроводники. Они выпускаются в виде поликристаллической керамики, текстурированной керамики, сверхпроводящих лент первого и второго поколения. Поликристаллическая керамика стоит недорого, но и параметры у нее далеки от рекордных: уже небольшие магнитные поля и токи могут разрушить сверхпроводимость. Ленты первого поколения тоже не поражают своими параметрами. Совсем другое дело — текстурированная керамика, она имеет наилучшие характеристики. Но для развлекательных опытов она неудобна, хрупка, деградирует со временем, и самое главное — найти ее в свободной продаже довольно сложно. А вот ленты второго поколения оказались идеальным вариантом для максимального числа наглядных опытов. Этот высокотехнологичный продукт умеют производить всего четыре компании в мире, в том числе российская «СуперОкс». И, что весьма важно, свои ленты, сделанные на основе GdBa2Cu3O7-x, они готовы продавать в количестве от одного метра, чего как раз хватает для проведения наглядных научных экспериментов.


Сверхпроводящая лента второго поколения имеет сложную структуру из множества слоев различного назначения. Толщина некоторых слоев измеряется нанометрами, так что это самые настоящие нанотехнологии.

Равно нулю

Наш первый опыт — измерение сопротивления сверхпроводника. Действительно ли оно нулевое? Измерять его обычным омметром бессмысленно: он покажет нуль и при подключении к медному проводу. Столь малые сопротивления измеряются иначе: через проводник пропускают большой ток и измеряют падения напряжения на нем. В качестве источника тока мы взяли обычную щелочную батарейку, которая при коротком замыкании дает около 5 А. При комнатной температуре как метр сверхпроводящей ленты, так и метр медного провода показывают сопротивление в несколько сотых ома. Охлаждаем проводники жидким азотом и сразу наблюдаем интересный эффект: еще до того как мы пустили ток, вольтметр уже показал примерно 1 мВ. По всей видимости, это термо-ЭДС, поскольку в нашей схеме много различных металлов (медь, припой, стальные «крокодильчики») и перепады температуры в сотни градусов (вычтем это напряжение при дальнейших измерениях).


Тонкий дисковый магнит прекрасно подходит для создания левитирующей платформы над сверхпроводником. В случае сверхпроводника-снежинки он легко «вдавливается» в горизонтальном положении, а в случае сверхпроводника-квадрата его стоит «вмораживать».

А теперь пропускаем ток через охлажденную медь: тот же провод показывает сопротивление уже всего в тысячные доли ома. А что же со сверхпроводящей лентой? Подключаем батарейку, стрелка амперметра мигом устремляется к противоположному краю шкалы, а вот вольтметр своих показаний не меняет даже на десятую милливольта. Сопротивление ленты в жидком азоте в точности равно нулю.


В качестве кюветы для сверхпроводящей сборки в форме снежинки отлично подошла крышка от пятилитровой бутыли с водой. В качестве теплоизоляционной подставки под крышку стоит использовать кусок меламиновой губки. Доливать азот приходится не чаще одного раза в десять минут.

Летательные аппараты

Теперь перейдем к взаимодействию сверхпроводника и магнитного поля. Малые поля из сверхпроводника вообще выталкиваются, а более сильные проникают в него не сплошным потоком, а в виде отдельных «струй». Кроме того, если мы двигаем магнит возле сверхпроводника, то в последнем наводятся токи, и их поле стремится вернуть магнит назад. Все это делает возможной сверхпроводящую или, как ее еще называют, квантовую левитацию: магнит или сверхпроводник могут висеть в воздухе, стабильно удерживаемые магнитным полем. Чтобы убедиться в этом, достаточно маленького редкоземельного магнитика и кусочка сверхпроводящей ленты. Если же иметь хотя бы метр ленты и неодимовые магниты покрупнее (мы использовали диск 40 x 5 мм и цилиндр 25 x 25 мм), то можно сделать эту левитацию весьма зрелищной, подняв в воздух дополнительный груз.


В первую очередь нужно нарезать ленту на кусочки и скрепить их в пакет достаточной площади и толщины. Скреплять можно и суперклеем, но это не слишком надежно, так что лучше спаять их обычным маломощным паяльником с обычным оловянно-свинцовым припоем. По результатам наших опытов можно рекомендовать два варианта пакетов. Первый — квадрат со стороной в три ширины ленты (36 x 36 мм) из восьми слоев, где в каждом следующем слое ленты укладываются перпендикулярно лентам предыдущего слоя. Второй — восьмилучевая «снежинка» из 24 отрезков ленты длиной 40 мм, уложенных друг на друга так, что каждый следующий отрезок повернут на 45 градусов относительно предыдущего и пересекает его в середине. Первый вариант немного проще в изготовлении, намного компактнее и прочнее, зато второй обеспечивает лучшую стабилизацию магнита и экономичный расход азота за счет его впитывания в широкие щели между листами.


Сверхпроводник может висеть не только над магнитом, но и под ним, да и вообще в любом положении относительно магнита. Равно как и магнит совсем не обязан висеть именно над сверхпроводником.

Кстати, о стабилизации стоит сказать отдельно. Если заморозить сверхпроводник, а потом просто поднести к нему магнит, то висеть магнит не будет — упадет в стороне от сверхпроводника. Чтобы стабилизировать магнит, нам нужно заставить поле проникнуть внутрь сверхпроводника. Сделать это можно двумя способами: «вмораживанием» и «вдавливанием». В первом случае мы размещаем магнит над теплым сверхпроводником на специальной опоре, затем наливаем жидкий азот и убираем опору. Такой метод отлично работает с «квадратом», он же подойдет и для монокристаллической керамики, если вы ее найдете. Со «снежинкой» метод тоже работает, хоть и чуть хуже. Второй метод предполагает, что вы будете силой приближать магнит к уже охлажденному сверхпроводнику, пока тот не захватит поле. С монокристаллом керамики такой метод почти не работает: слишком большие усилия нужны. А вот с нашей «снежинкой» работает великолепно, позволяя стабильно подвесить магнит в разных положениях (с «квадратом» тоже, но положение магнита невозможно сделать произвольным).


Чтобы увидеть квантовую левитацию, достаточно даже небольшого отрезка сверхпроводящей ленты. Правда, удерживать в воздухе получится лишь маленький магнитик и на небольшой высоте.

Свободное парение

И вот магнит уже висит в полутора сантиметрах над сверхпроводником, напоминая о третьем законе Кларка: «Любая достаточно развитая технология неотличима от магии». Почему бы не сделать картину еще более магической — разместить на магните свечку? Прекрасный вариант для романтического квантово-механического ужина! Правда, надо учесть пару моментов. Во‑первых, свечи в металлической гильзе стремятся сползти к краю диска-магнита. Чтобы избавится от этой проблемы, можно использовать подсвечник-подставку в виде длинного винта. Вторая проблема — выкипание азота. Если попробовать долить его просто так, то идущий из термоса пар гасит свечу, так что лучше использовать широкую воронку.


Восьмислойный пакет сверхпроводящих лент может легко удержать весьма массивный магнит на высоте 1 см и более. Увеличение толщины пакета повысит удерживаемую массу и высоту полета. Но выше нескольких сантиметров магнит в любом случае не поднимется.

Кстати, а куда именно доливать азот? В какую емкость поместить сверхпроводник? Проще всего оказались два варианта: кювета из сложенной в несколько слоев фольги и, в случае «снежинки», крышечка от пятилитровой бутыли с водой. В обоих случаях емкость ставится на кусок меламиновой губки. Эта губка продается в супермаркетах и предназначена для уборки, она — хороший теплоизолятор, который прекрасно выдерживает криогенные температуры.


В целом жидкий азот достаточно безопасен, однако при его использовании все-таки необходимо действовать аккуратно. Также очень важно не закрывать емкости с ним герметично, иначе при испарении в них повышается давление и они могут взорваться! Хранить и транспортировать жидкий азот можно в обычных стальных термосах. По нашему опыту в двухлитровом термосе он сохраняется как минимум двое суток, а в трехлитровом — еще дольше. На один день домашних экспериментов, в зависимости от их интенсивности, уходит от одного до трех литров жидкого азота. Стоит он недорого — примерно 30−50 рублей за литр.

Наконец, мы решили собрать рельс из магнитов и пустить по нему «летящий вагон» с начинкой из сверхпроводника, с обкладками из пропитанной жидким азотом меланиновой губки и оболочкой из фольги. С прямым рельсом проблем не возникло: взяв магниты 20 x 10 x 5 мм и укладывая их на листе железа подобно кирпичам в стене (горизонтальной стене, поскольку нам нужно горизонтальное направление магнитного поля), легко собрать рельс любой длины. Только нужно торцы магнитов смазывать клеем, чтобы они не разъезжались, а оставались плотно сжатыми, без зазоров. По такому рельсу сверхпроводник скользит совершенно без трения. Еще интереснее собрать рельс в форме кольца. Увы, здесь без зазоров между магнитами уже не обойтись, а на каждом зазоре сверхпроводник немного тормозится… Тем не менее хорошего толчка вполне хватает на пару-тройку кругов. При желании можно попробовать обточить магниты и изготовить специальную направляющую для их установки — тогда возможен и кольцевой рельс без стыков.

Редакция выражает благодарность компании «СуперОкс» и лично ее руководителю Андрею Петровичу Вавилову за предоставленные сверхпроводники, а также интернет-магазину neodim.org за предоставленные магниты.

Физическое объяснение

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля , что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик . Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.

Эффект Мейсснера не может быть объяснён только бесконечной проводимостью. Впервые его природу объяснили братья Фриц и Хайнц Лондон c помощью уравнения Лондонов . Они показали, что в сверхпроводник поле проникает на фиксированную глубину от поверхности - лондоновскую глубину проникновения магнитного поля . Для металлов мкм.

Сверхпроводники I и II рода

Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость бывает у сплавов. У чистых веществ имеет место полный эффект Мейснера, а у сплавов не происходит полного выталкивания магнитного поля из объёма (частичный эффект Мейснера). Вещества, проявляющие полный эффект Мейснера, называются сверхпроводниками первого рода, а частичный - сверхпроводниками второго рода.

У сверхпроводников второго рода в объёме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объём, а распределено в нём в виде отдельных нитей. Что же касается сопротивления, оно равно нулю, как и в сверхпроводниках первого рода.

«Гроб Магомета»

«Гроб Магомета» - опыт, демонстрирующий этот эффект в сверхпроводниках .

Происхождение названия


Wikimedia Foundation . 2010 .

Смотреть что такое "Эффект Мейснера" в других словарях:

    эффект Мейснера - Meisnerio reiškinys statusas T sritis fizika atitikmenys: angl. Meissner effect vok. Meißner Effekt, m; Meißner Ochsenfeld Effekt, m rus. эффект Мейснера, m pranc. effet Meissner, m … Fizikos terminų žodynas

    эффект Мейснера-Оксенфельда - Явление обращения в нуль магнитной индукции в глубине массивного сверхпроводника … Политехнический терминологический толковый словарь

    Вытеснение магнитного поля из металлического проводника при его переходе в сверхпроводящее состояние; открыт в 1933 немецкими физиками В. Мейснером (W. Meißner) и Р. Оксенфельдом (R. Ochsenfeld). * * * МЕЙСНЕРА ЭФФЕКТ МЕЙСНЕРА ЭФФЕКТ, вытеснение… … Энциклопедический словарь

    Схема Эффекта Мейснера. Показаны линии магнитного поля и их вытеснение из сверхпроводника, находящегося ниже своей критической температуры. Эффект Мейснера полное вытеснение магнитного поля из материала при переходе в сверхпроводящее состояние.… … Википедия

    Полное вытеснение магн. поля из металлич. проводника, когда последний становится сверхпроводящим (при понижении темп ры и напряжённости магн. поля ниже критич. значения Нк). М. э. впервые наблюдался нем. физиками В. Мейснером (W. Meissner) и Р.… … Физическая энциклопедия

    МЕЙСНЕРА ЭФФЕКТ, вытеснение магнитного поля из вещества при его переходе в сверхпроводящее состояние (смотри Сверхпроводимость). Открыт немецкими физиками В. Мейснером и Р. Оксенфельдом в 1933 … Современная энциклопедия

    Вытеснение магнитного поля из вещества при его переходе в сверхпроводящее состояние; открыт в 1933 немецкими физиками В. Мейснером и Р. Оксенфельдом … Большой Энциклопедический словарь

    Мейснера эффект - МЕЙСНЕРА ЭФФЕКТ, вытеснение магнитного поля из вещества при его переходе в сверхпроводящее состояние (смотри Сверхпроводимость). Открыт немецкими физиками В. Мейснером и Р. Оксенфельдом в 1933. … Иллюстрированный энциклопедический словарь

    Полное вытеснение магнитного поля из металлического проводника, когда последний становится сверхпроводящим (при напряжённости приложенного магнитного поля ниже критического значения Hk). М. э. впервые наблюдался в 1933 немецкими физиками… … Большая советская энциклопедия

Книги

  • Мои научные статьи. Книга 2. Метод матриц плотности в квантовых теориях сверхтекучести и сверхпровод , Бондарев Борис Владимирович. В этой книге собраны статьи, в которых методом матриц плотности были изложены новые квантовые теории сверхтекучести и сверхпроводимости. В первой статье развита теория сверхтекучести, в…

Загадочные квантовые явления до сих пор удивляют исследователей своим невообразимым поведением. Ранее мы говорили о , сегодня же рассмотрим другое квантово-механическое явление - сверхпроводимость.

Что такое сверхпроводимость? Сверхпроводимость - это квантовое явление протекания электрического тока в твердом теле без потерь, то есть при строго нулевом электрическом сопротивлении тела.

С введением в физику такого понятия как «абсолютный ноль» ученые стали все больше исследовать свойства веществ при низкой температуре, когда движение молекул практически отсутствует. Для достижения низких температур требуется проведение такого процесса, как «сжижение газа». При испарении такой газ отбирает энергию у тела, которое погружено в этот газ, так как для отрыва молекул от жидкости требуется энергия. Подобные процессы протекают в бытовых холодильниках, где сжиженный газ фреон испарятся в морозилке.

В конце XIX - начале XX столетия уже были получены такие сжиженные газы как кислород, азот, водород. Долгое время не поддавался сжижению гелий, при этом ожидалось, что он поможет достичь минимальной температуры.

Успех в сжижении гелия был достигнут голландским физиком Хейке Камерлинг-Оннесем в 1908-м году, который работал в Лейденском университете (Нидерланды). Сжиженный гелий позволял достичь рекордно низкой температуры - около 4 К. Получив жидкий гелий, ученый начал заниматься изучением свойств разных материалов при гелиевых температурах.

История открытия

Одним из вопросов, которые интересовали Камерлинг-Оннеса, было изучение сопротивления металлов при сверхнизких температурах. Было известно, что с ростом температуры электрическое сопротивление также растет. Следовательно, можно ожидать, что с уменьшением температуры будет наблюдаться обратный эффект.

Экспериментируя с ртутью в 1911-м году, ученый довел ее до замерзания и продолжил понижать температуру. При достижении 4,2 К устройство перестало фиксировать сопротивление. Оннес заменял устройства в исследовательской установке, поскольку побаивался их неисправности, однако устройства неизменно показывали нулевое сопротивление, несмотря на то, что до абсолютного нуля оставалось еще 4 К.

После открытия сверхпроводимости ртути возникло большое количество вопросов. Среди них: «свойственна ли сверхпроводимость другим веществам, помимо ртути?» или «сопротивление снижается до нуля, либо оно настолько мало, что устройства, которые существуют, не могут его измерить.

Оннес предложил оригинальное исследование с непрямым измерением, до какого уровня понижается сопротивление. Возбужденный в полупроводниковой цепи электрический ток, который был измерен при помощи отклонения магнитной стрелки, не затухал несколько лет. Согласно результатам этого эксперимента, полученное посредством расчетов удельное электрическое сопротивление сверхпроводника равнялось 10−25 Ом.м. По сравнению с удельным электрическим сопротивлением меди (1.5۰10−8 Ом.м) данная величина меньше на 7 порядков, что делает ее практически нулевой.

Эффект Мейснера

Помимо сверхпроводимости, сверхпроводники обладают еще одной отличительной чертой, а именно - эффектом Мейснера. Это явление быстрого затухания магнитного поля в сверхпроводнике. Сверхпроводник является диамагнетиком, то есть в магнитном поле в сверхпроводнике индуцируются макроскопические токи, которые создают собственное магнитное поле, которое полностью компенсирует внешнее.

Эффект Мейснера пропадает в сильных магнитных полях. В зависимости от типа сверхпроводника (об этом далее) сверхпроводящее состояние при этом либо пропадает полностью (сверхпроводники I-го рода), либо сверхпроводник сегментируется на нормальные и сверхпроводимые области (II-го рода). Именно этот эффект способен объяснить левитацию сверхпроводника над сильным магнитом, либо магнита над сверхпроводником.

Теоретическое объяснение эффекта сверхпроводимости

Феноменологический подход. Хоть Камерлинг-Оннес и является первооткрывателем сверхпроводимости, первая теория сверхпроводимости впервые была предложена в 1935-м году немецкими физиками и братьями Фрицом и Гайнцом Лондонами. Ученые стремились математически записать такие свойства сверхпроводника как сверхпроводимость и эффект Мейснера, не вникая в микроскопические причины сверхпроводимости, феноменологически. Выведенные уравнения позволяли объяснить эффект Мейснера так, что внешнее магнитное поле могло проникать в сверхпроводник только на определенную глубину, зависящую от так называемой лондоновской глубины проникновения. Для объяснения сверхпроводимости, потребовалось предположение о том, что носителями тока в сверхпроводнике, как и в металле, являются электроны. При этом, нулевое сопротивление означает то, что электрон не испытывает столкновений во время своего движения. Так как это относится ко всем электронам проводимости, то имеет место ток электронов без сопротивления.

Очевидно, что данная теория не объясняет саму природу данного явления, а лишь описывает его и позволяет предсказывать его поведение в ряде случаев. Более глубокая, но также, феноменологическая теория была предложена в 1950-м году советскими физиками-теоретиками Левом Ландау и Виталием Гнизбургом.

Теория БКШ. Первое качественное объяснение явлению сверхпроводимости было предложено в рамках так называемой теории БКШ, построенной американскими физиками Джоном Бардином, Леоном Купером и Джоном Шриффером. Эта теория выходит из предположения, что между электронами при определенных условиях может возникать притяжение. Притяжение, которое обусловлено различными возбуждениями, в первую очередь - колебаниями кристаллической решетки, способно создавать «куперовские пары» — связанные состояния двух электронов в кристалле. Такая пара может двигаться в кристалле, не рассеиваясь ни на колебания кристаллической решетки, ни на примеси. В веществах с температурой, далекой от нуля, достаточно энергии, чтобы «разорвать» такую пару электронов, в то время как при низких температурах система не обладает достаточной энергией. В результате этого возникает поток связанных электронов - куперовских пар, которые практически не взаимодействуют с веществом. В 1972-м году Д. Бардин, Л. Купер и Д. Шриффер получили Нобелевскую премию по физике.

Позднее советский физик-теоретик Николай Боголюбов усовершенствовал теорию БКШ. В своих работах ученый подробно описал условия, при которых могут образовываться куперовские пары (энергия близкая к энергии Ферми, определенные спины и др.) в результате квантовых эффектов. По отдельности электроны представляют собой частицы с полуцелым спином (фермионы), которые неспособны образовывать и переходить в сверхтекучее состояние. Когда же имеется куперовская пара электронов, то она представляет собой квазичастицу с целым спином и является . При определенных условиях бозоны способны формировать конденсат Бозе-Эйнштейна, то есть вещество, частицы которого занимают одно и то же состояние, что приводит к возникновению сверхтекучести. Такая сверхтекучесть электронов и объясняет эффект сврехпроводимости.

Сверхпроводники в переменном электрическом поле

Кроме сверхпроводимости и эффекта Мейснера, сверхпроводники обладают рядом других свойств. Стоит отметить следующее — нулевое сопротивление сверхпроводников характерно только при постоянном токе. Переменное электрическое поле делает сопротивление сверхпроводника ненулевым и оно растет, с увеличением частоты поля.

Также как двухжидкостная модель разделяет сверхтекучий материал на область сверхтекучести и область обычного вещества, так разделяется и поток электронов на сверхпроводящие и обычные. Постоянно поле ускоряло бы сверхпроводящие электроны до бесконечности (учитывая их нулевое сопротивление), что невозможно, потому оно обращается в ноль при попадании в сверхпроводник. Так как постоянное электрическое поле не действует на сверхпроводники, то и обычные электроны не подвержены его воздействию (оно просто выталкивается наружу), а значит движение представлено лишь сверхпроводящими электронами.

В случае с переменным электрическим полем происходит процесс ускорения электронов с последующим замедлением, что физически возможно. В таком случае имеет место и ток обычных электронов, которые обладают свойством сопротивления. Чем выше частота такого поля, тем большее проявляются эффекты, связанные с обычными электронами.

Момент Лондона

Еще одно интересное свойство сверхпроводника - момент Лондона. Суть феномена заключается в том, что вращающийся сверхпроводник создает магнитное поле, которое выравнивается точно вдоль оси вращения проводника.

Дальнейшее исследование этого явления привело к открытию гравити магнитного момента Лондона. В2006-м году исследователи Мартин Таджмар из института ARC Seibersdorf Research, Австрия, и Кловис де Матос из Европейского космического агентства (ESA) обнаружили, что вращающийся с ускорением сврехпроводник генерирует также и гравитационное поле. Однако такое гравитационное поле слабее земного примерно в 100 миллионов раз.

Классификация сверхпроводников

Существует несколько классификаций сверхпроводников, которые опираются на такие критерии:

  1. Реакция на магнитное поле. Это свойство делит сверхпроводники на две категории. Сверхпроводники I-го рода имеют некоторое одно критическое значение магнитного поля, превысив которое, они теряют сверхпроводимость. II-го рода - имеют два предельных значения магнитного поля. При применении магнитного поля, ограниченного этими значениями, к сверхпроводникам этой категории, поле частично проникает внутрь, при этом сохраняя сверхпроводимость.
  2. Критическая температура. Различают низкотемпературные и высокотемпературные сверхпроводники. Первые обладают свойством сверхпроводимости при температурах ниже −196 °C или 77 К. Высокотемпературным сверхпроводникам достаточно температуры выше указанной. Такое разделение имеет место, так как высокотемпературные сверхпроводники могут применяться на практике в качестве охладителей.
  3. Материал. Здесь выделяют такие разновидности как: чистый химический элемент (вроде ртути или свинца), сплавы, керамика, органические или на основе железа.
  4. Теоретическое описание. Как известно, любая физическая теория имеет определенную область применения. По этой причине, для дальнейшего применения, имеет смысл разделять сверхпроводники по теориям, которые способны описать их природу.

Сверхпроводимость графена

За последние несколько лет известность графена значительно возросла. Напомним, что графен представляет собой слой модифицированного углерода, толщиной в один атом. В первую очередь, этому поспособствовало открытие углеродных нанотрубок - специфическому сверхпрочному материалу, который создается посредством сворачивания одного или нескольких слоев графена.

В 2018-м году группа исследователей из Массачусетского технологического института и Гарвардского университета под руководством профессора Пабло Джарилло-Эрреро, обнаружила, что при вращении под определенном («магически») углом, два листа графена полностью лишены электропроводимости. Когда исследователи применили к материалу напряжение, добавив небольшое количество электродов к этой графеновой конструкции, они обнаружили, что на определенном уровне электроны вырвались из исходного изолирующего состояния и протекали без сопротивления. Важнейшей особенностью данного явления является то, что сверхпроводимость указанной графеновой конструкции была получена при комнатной температуре. И хотя объяснение данного эффекта все еще остается под вопросом, его потенциал в сфере энергоснабжения довольно высок.

Применение сверхпроводников

Сверхпроводники еще не получили широкое применение, однако разработки в этой области активно ведутся. Так благодаря эффекту Мейснера возможны «парящие» над дорогой поезда на магнитной подушке - маглевы.

На основе сверхпроводников уже создаются сверхмощные турбогенераторы, которые могут применяться на электростанциях.

Криотрон - еще одно применение сверхпроводимости, которое может быть полезно для техники и электронных приборов. Это такое устройство, которое может переключать состояние сверхпроводника из обычного в сверхпроводящее за очень короткое время (от 10⁻⁶ до 10⁻¹¹с). Криотроны могут быть использованы в информационных системах, связанных с запоминанием и кодированием. Так впервые они применялись как запоминающие устройства в ЭВМ. Также криотроны могут помочь в области криоэлектроники, среди задач которой - повысить чувствительность приемников сигнала и сохранить форму сигнала как можно лучше. Здесь достижению поставленных целей способствуют низкие температуры и эффект сверхпроводимости.

Также, в силу отсутствия сопротивления в сверхпроводниках, кабели из такого вещества доставляли бы электричество без потерь на нагревание, что значительно бы повысило эффективность электроснабжения. Сегодня такие кабели требуют охлаждения посредством жидкого азота, что повышает цену на их эксплуатацию. Однако, исследования в этой сфере ведутся, и первая электропередача на основе сверхпроводников была приведена в эксплуатацию в Нью-Йорке 2008-м году компанией American Superconductor. В 2015-м году Южная Корея объявила о намерении создать несколько тысяч километров сверхпроводящих линий электропередач. Если добавить к этому недавнее открытие сверхпроводимости графена при комнатной температуре, то в ближайшее время следует ожидать глобальные изменения в области электроснабжения.

Кроме указанных областей применения, сверхпроводимость применяется в измерительной технике, начиная от детекторов фотонов и заканчивая измерением геодезической прецессии посредством сверхпроводящих гироскопов на космическом аппарате «Gravity Probe B». Это измерение подтвердило предсказание Эйнштейна о наличии таковой прецессии по причинам, изложенным в Общей теории относительности. Не углубляясь в механизм измерения, следует отметить, что данные о геодезической прецессии Земли позволяют точно калибровать искусственные спутники Земли.

Подводя итоги написанного выше, напрашивается вывод о перспективности эффекта сверхпроводимости во множестве областей, и большом потенциале сверхпроводников, в первую очередь в сферах электроснабжения и электротехники. Ожидаем в ближайшее время множество открытий в данной области.

Левитация - это преодоление силы тяжести, при которой субъект или объект находится в пространстве без опоры. Слово «левитация» происходит от латинского Levitas, что означает «легкость».

Левитацию неправильно приравнивать к полету, потому что последний основан на сопротивлении воздуха, именно поэтому птицы, насекомые и другие животные летают, а не левитируют.

Левитация в физике

Левитация в физике относится к устойчивому положению тела в гравитационном поле, при этом тело не должно касаться других объектов. Левитация подразумевает некоторые необходимые и труднодостижимые условия:

  • Сила, которая способна компенсировать гравитационное притяжение и силу тяжести.
  • Сила, которая способна обеспечить устойчивость тела в пространстве.

Из закона Гаусса следует, что в статическом магнитном поле статические тела или объекты не способны к левитации. Однако если сменить условия, то можно достичь левитации.

Квантовая левитация

Широкой публике о квантовой левитации впервые стало известно в марте 1991 года, когда в научном журнале Nature было опубликовано интересное фото. На нем директор Токийской исследовательской лаборатории по сверхпроводимости Дон Тапскотт стоял на керамической сверхпроводящей пластине, а между полом и пластиной не было ничего. Фотография оказалась настоящей, а пластина, которая вместе со стоящим на ней директором весила около 120 килограммов, могла левитировать над полом благодаря эффекту сверхпроводимости, известному как эффект Мейснера-Оксенфельда.

Диамагнитная левитация

Так называют тип пребывания в подвешенном состоянии в магнитном поле тела, содержащего воду, которая сама по себе является диамагнетиком, то есть материалом, атомы которого способны намагничиваться против направления основного электромагнитного поля.

В процессе диамагнитной левитации основную роль играют диамагнитные свойства проводников, атомы которых под действием внешнего магнитного поля слегка изменяют параметры движения электронов в их молекулах, что приводит к появлению слабого магнитного поля, противоположного по направлению основному. Эффекта этого слабого электромагнитного поля достаточно, чтобы преодолеть силу тяжести.

Чтобы продемонстрировать диамагнитную левитацию, ученые многократно проводили опыты на небольших животных.

Этот вид левитации использовался в экспериментах на живых объектах. Во время опытов во внешнем магнитном поле с индукцией около 17 Тесла было достигнуто подвешенное состояние (левитация) лягушек и мышей.

По третьему закону Ньютона, свойства диамагнетиков можно использовать и наоборот, то есть для левитации магнита в поле диамагнетика или для его стабилизации в электромагнитном поле.

Диамагнитная левитация по своей природе идентична квантовой левитации. То есть как и при воздействии эффекта Мейснера, происходит абсолютное вытеснение из материала проводника магнитного поля. Небольшим отличием является лишь то, что для достижения диамагнитной левитации необходимо значительно более сильное электромагнитное поле, однако при этом совершенно не нужно охлаждать проводники, чтобы добиться их сверхпроводимости, как в случае с квантовой левитацией.

В домашних условиях можно даже поставить несколько опытов по диамагнитной левитации, например, при наличии двух пластин висмута (который является диамагнетиком) можно установить в подвешенное состояние магнит с невысокой индукцией, около 1 Тл. Кроме того, в электромагнитном поле с индукцией в 11 Тесла можно стабилизировать в подвешенном состоянии небольшой магнит, регулируя его положение пальцами, при этом совершенно не касаясь магнита.

Часто встречающимися диамагнетиками являются практически все инертные газы, фосфор, азот, кремний, водород, серебро, золото, медь и цинк. Даже человеческое тело является диамагнетиком в правильном электромагнитном магнитном поле.

Магнитная левитация

Магнитная левитация - это эффективный метод поднятия объекта с использованием магнитного поля. В этом случае магнитное давление используется для компенсации силы тяжести и свободного падения.

Согласно теореме Ирншоу, нельзя удерживать объект в гравитационном поле устойчиво. То есть левитация при таких условиях невозможна, однако если принять во внимание механизмы действия диамагнетиков, вихревых токов и сверхпроводников, то можно достичь эффективной левитации.

Если магнитная левитация обеспечивает подъемную силу при механической поддержке, такое явление принято называть псевдолевитацией.

Эффект Мейснера

Эффект Мейснера - это процесс абсолютного вытеснения магнитного поля из всего объема проводника. Обычно это происходит в процессе перехода проводника в сверхпроводящее состояние. Именно этим сверхпроводники отличаются от идеальных - при том, что у обоих сопротивление отсутствует, магнитная индукция идеальных проводников остается неизменной.

Впервые это явление наблюдали и описали в 1933 году двое немецких физиков - Мейснер и Оксенфельд. Именно поэтому иногда квантовую левитацию называют эффектом Мейснера-Оксенфельда.

Из общих законов электромагнитного поля следует, что при отсутствии в объеме проводника магнитного поля в нем присутствует только поверхностный ток, который занимает пространство у поверхности сверхпроводника. При этих условиях сверхпроводник ведет себя так же, как и диамагнетик, при этом таковым не являясь.

Эффект Мейснера разделяют на полный и частичный, в зависимости от качества сверхпроводников. Полный эффект Мейснера наблюдается, когда магнитное поле вытесняется полностью.

Высокотемпературные сверхпроводники

В природе мало чистых сверхпроводников. Большинство их материалов, обладающих свойствами сверхпроводимости, являются сплавами, у которых чаще всего наблюдается лишь частичный эффект Мейснера.

В сверхпроводниках именно способность полностью вытеснять магнитное поле из своего объема разделяет материалы на сверхпроводники первого и второго типов. Сверхпроводниками первого типа являются чистые вещества, например, ртуть, свинец и олово, способные даже при высоких магнитных полях продемонстрировать полный эффект Мейснера. Сверхпроводники второго типа - чаще всего сплавы, а также керамика или некоторые органические соединения, которые в условиях магнитного поля с высокой индукцией способны лишь на частичное вытеснение магнитного поля из своего объема. Тем не менее в условиях очень малой индукции магнитного поля практически все сверхпроводники, в том числе и второго типа, способны на полный эффект Мейснера.

Известно несколько сотен сплавов, соединений и несколько чистых материалов, обладающих характеристиками квантовой сверхпроводимости.

Опыт «Гроб Магомета»

«Гроб Магомета» - это своеобразный фокус с левитацией. Так называли опыт, наглядно демонстрирующий эффект.

Согласно мусульманской легенде, гроб пророка Магомеда находился в воздухе в подвешенном состоянии, без какой-либо опоры и поддержки. Именно поэтому у опыта такое название.

Научное объяснение опыта

Сверхпроводимость может быть достигнута лишь при очень низких температурах, поэтому сверхпроводник необходимо заранее охладить, например, при помощи высокотемпературных газов, таких как жидкий гелий или жидкий азот.

Затем на поверхность плоского охлажденного сверхпроводника помещают магнит. Даже в полях с минимальной магнитной индукцией, не превышающей 0,001 Тесла, магнит поднимается вверх над поверхностью сверхпроводника примерно на 7-8 миллиметров. Если постепенно увеличивать индукцию магнитного поля, расстояние между поверхностью сверхпроводника и магнитом будет увеличиваться все больше и больше.

Магнит буде продолжать левитировать до того момента, пока внешние условия не изменятся и сверхпроводник не потеряет свои сверхпроводящие характеристики.

В 1933 году немецкий физик Вальтер Фриц Мейснер совместно со своим коллегой Робертом Оксенфельдом открыл эффект, который впоследствии назвали его именем. Эффект Мейснера заключается в том, что при переходе в сверхпроводящее состояние, наблюдается полное вытеснение магнитного поля из объема проводника. Наглядно это можно наблюдать с помощью опыта, которому дали название “Гроб Магомета” (по легенде, гроб мусульманского пророка Магомета висел в воздухе без физической поддержки). В этой статье мы расскажем об Эффекте Мейснера и его будущему и настоящему практическому применению.

В 1911 году Хейке Камерлинг-Оннес сделал важное открытие – сверхпроводимость. Он доказал, что если охладить некоторые вещества до температуры 20 К, то они не оказывают сопротивление электрическому току. Низкая температура “успокаивает” случайные колебания атомов, и электричество не встречает сопротивление.

После этого открытия началась настоящая гонка по нахождению таких веществ, которые не будут оказывать сопротивление без охлаждения, например при обычной комнатной температуре. Такой сверхпроводник сможет передавать электричество на гигантские расстояния. Дело в том, что обычные линии электропередач теряют значительное количество электрического тока, как раз из-за сопротивления. Пока же физики ставят свои опыты с помощью охлаждения сверхпроводников. И одним из самых популярных опытов, является демонстрация Эффекта Мейснера. В сети можно встретить множество роликов, показывающих этот эффект. Мы выложили один, который лучше всего демонстрирует это.

Для демонстрации опыта левитации магнита над сверхпроводником нужно взять высокотемпературную сверхпроводящую керамику и магнит. Керамика охлаждается с помощью азота до уровня сверхпроводимости. К ней подключается ток и сверху кладется магнит. В полях 0,001 Тл магнит смещается вверх и левитирует над сверхпроводником.

Объясняется эффект тем, что при переходе вещества в сверхпроводимость, магнитное поле выталкивается из его объема.

Как можно применить эффект Мейснера на практике? Наверное, каждый читатель этого сайта видел множество фантастических фильмов, в которых автомобили парили над дорогой. Если удастся изобрести вещество, которое превратится в сверхпроводник при температуре, скажем не ниже +30, то это уже не окажется фантастикой.

А как же сверхскоростные поезда, которые тоже парят над железной дорогой. Да они существуют уже сейчас. Но в отличие от Эффекта Мейснера, там действуют другие законы физики: отталкивание однополюсных сторон магнитов. К сожалению, дороговизна магнитов не позволяет широко распространить эту технологию. С изобретение сверхпроводника, которого не нужно охлаждать, летающие машины станут реальностью.

Ну а пока Эффект Мейснера взяли на свое вооружение фокусники. Одно из таких представлений мы раскопали для вас в сети. Свои трюки показывает труппа “Эксос”. Никакой магии – только физика.



top