Что такое период колебания маятника. Частота, период, циклическая частота, амплитуда, фаза колебаний

Что такое период колебания маятника. Частота, период, циклическая частота, амплитуда, фаза колебаний

Колебательным называется любое периодически повторяющееся движение. Поэтому зависимости координаты и скорости тела от времени при колебаниях описываются периодическими функциями времени. В школьном курсе физики рассматриваются такие колебания, в которых зависимости и скорости тела представляют собой тригонометрические функции , или их комбинацию, где - некоторое число. Такие колебания на-зываются гармоническими (функции и часто называют гармоническими функциями). Для решения задач на колебания, входящих в программу единого государственного экзамена по физике, нужно знать определения основных характеристик колебательного движения: амплитуды, периода, частоты, круговой (или циклической) частоты и фазы колебаний. Дадим эти определения и свяжем перечисленные величины с параметрами зависимости координаты тела от времени , которая в случае гармонических колебаний всегда может быть представлена в виде

где , и - некоторые числа.

Амплитудой колебаний называется максимальное отклонение колеблющегося тела от положения равновесия. Поскольку максимальное и минимальное значение косинуса в (11.1) равно ±1, то амплитуда колебаний тела, совершающего колебания (11.1), равна величине . Период колебаний - это минимальное время, через которое движение тела повторяется. Для зависимости (11.1) период можно установить из следующих соображений. Косинус - периодическая функция с периодом . Поэтому движение полностью повторяется через такое значение , что . Отсюда получаем

Круговой (или циклической) частотой колебаний называется число колебаний, совершаемых за единиц времени. Из формулы (11.3) заключаем, что круговой частотой является величина из формулы (11.1).

Фазой колебаний называется аргумент тригонометрической функции, описывающей зависимость координаты от времени. Из формулы (11.1) видим, что фаза колебаний тела, движение которого описывается зависимостью (11.1), равна . Значение фазы колебаний в момент времени = 0 называется начальной фазой. Для зависимости (11.1) начальная фаза колебаний равна величине . Очевидно, начальная фаза колебаний зависит от выбора начала отсчета времени (момента = 0), которое всегда является условным. Изменением начала отсчета времени начальная фаза колебаний всегда может быть «сделана» равной нулю, а синус в формуле (11.1) «превращен» в косинус или наоборот.

В программу единого государственного экзамена входит также знание формул для частоты колебаний пружинного и математического маятников. Пружинным маятником принято называть тело, которое может совершать колебания на гладкой горизонтальной поверхности под действием пружины, второй конец которой закреплен (левый рисунок). Математическим маятником называется массивное тело, размерами которого можно пренебречь, совершающее колебания на длинной, невесомой и нерастяжимой нити (правый рисунок). Название этой системы – «математический маятник» связано с тем, что она представляет собой абстрактную математическую модель реального (физического ) маятника. Необходимо помнить формулы для периода (или частоты) колебаний пружинного и математического маятников. Для пружинного маятника

где - длина нити, - ускорение свободного падения. Рассмотрим применение этих определений и законов на примере решения задач.

Чтобы найти циклическую частоту колебаний груза в задаче 11.1.1 найдем сначала период колебаний, а затем воспользуемся формулой (11.2). Поскольку 10 м 28 с - это 628 с, и за это время груз совершает 100 колебаний, период колебаний груза равен 6,28 с. Поэтому циклическая частота колебаний равна 1 c -1 (ответ 2 ). В задаче 11.1.2 груз за 600 с совершил 60 колебаний, поэтому частота колебаний - 0,1 с -1 (ответ 1 ).

Чтобы понять, какой путь пройдет груз за 2,5 периода (задача 11.1.3 ), проследим за его движением. Через период груз вернется назад в точку максимального отклонения, совершив полное колебание. Поэтому за это время груз пройдет расстояние, равное четырем амплитудам: до положения равновесия - одна амплитуда, от положения равновесия до точки максимального отклонения в другую сторону - вторая, назад в положение равновесия - третья, из положения равновесия в начальную точку - четвертая. За второй период груз снова пройдет четыре амплитуды, а за оставшиеся половину периода - две амплитуды. Поэтому пройденный путь равен десяти амплитудам (ответ 4 ).

Величина перемещения тела - расстояние от начальной точки до конечной. За 2,5 периода в задаче 11.1.4 тело успеет совершить два полных и половину полного колебания, т.е. окажется на максимальном отклонении, но с другой стороны от положения равновесия. Поэтому величина перемещения равна двум амплитудам (ответ 3 ).

По определению фаза колебаний - это аргумент тригонометрической функции, которой описывается зависимость координаты колеблющегося тела от времени. Поэтому правильный ответ в задаче 11.1.5 - 3 .

Период - это время полного колебания. Это значит, что возвращение тела назад в ту же точку, из которой тело начало движение, еще не означает, что прошел период: тело должно вернуться в ту же точку с той же скоростью. Например, тело, начав колебания из положения равновесия, за период успеет отклониться на максимальную величину в одну сторону, вернуться назад, отклонится на максимум в другую сторону и снова вернуться назад. Поэтому за период тело успеет два раза отклониться на максимальную величину от положения равновесия и вернуться обратно. Следовательно, на прохождение от положения равновесия до точки максимального отклонения (задача 11.1.6 ) тело затрачивает четвертую часть периода (ответ 3 ).

Гармоническими называются такие колебания, при которых зависимость координаты колеблющегося тела от времени описывается тригонометрической (синус или косинус) функцией времени. В задаче 11.1.7 таковыми являются функции и , несмотря на то, что входящие в них параметры обозначены как 2 и 2 . Функция же - тригонометрическая функция квадрата времени. Поэтому гармоническими являются колебания только величин и (ответ 4 ).

При гармонических колебаниях скорость тела изменяется по закону , где - амплитуда колебаний скорости (начало отсчета времени выбрано так, чтобы начальная фаза колебаний равнялась бы нулю). Отсюда находим зависимость кинетической энергии тела от времени
(задача 11.1.8 ). Используя далее известную тригонометрическую формулу, получаем

Из этой формулы следует, что кинетическая энергия тела изменяется при гармонических колебаниях также по гармоническому закону, но с удвоенной частотой (ответ 2 ).

За соотношением между кинетической энергий груза и потенциальной энергией пружины (задача 11.1.9 ) легко проследить из следующих соображений. Когда тело отклонено на максимальную величину от положения равновесия, скорость тела равна нулю, и, следовательно, потенциальная энергия пружины больше кинетической энергии груза. Напротив, когда тело проходит положение равновесия, потенциальная энергия пружины равна нулю, и, следовательно, кинетическая энергия больше потенциальной. Поэтому между прохождением положения равновесия и максимальным отклонением кинетическая и потенциальная энергия один раз сравниваются. А поскольку за период тело четыре раза проходит от положения равновесия до максимального отклонения или обратно, то за период кинетическая энергия груза и потенциальная энергия пружины сравниваются друг с другом четыре раза (ответ 2 ).

Амплитуду колебаний скорости (задача 11.1.10 ) проще всего найти по закону сохранения энергии. В точке максимального отклонения энергия колебательной системы равна потенциальной энергии пружины , где - коэффициент жесткости пружины, - амплитуда колебаний. При прохождении положения равновесия энергия тела равна кинетической энергии , где - масса тела, - скорость тела при прохождении положения равновесия, которая является максимальной скоростью тела в процессе колебаний и, следовательно, представляет собой амплитуду колебаний скорости. Приравнивая эти энергии, находим

(ответ 4 ).

Из формулы (11.5) заключаем (задача 11.2.2 ), что от массы математического маятника его период не зависит, а при увеличении длины в 4 раза период колебаний увеличивается в 2 раза (ответ 1 ).

Часы - это колебательный процесс, который используется для измерения интервалов времени (задача 11.2.3 ). Слова часы «спешат» означают, что период этого процесса меньше того, каким он должен быть. Поэтому для уточнения хода этих часов необходимо увеличить период процесса. Согласно формуле (11.5) для увеличения периода колебаний математического маятника необходимо увеличить его длину (ответ 3 ).

Чтобы найти амплитуду колебаний в задаче 11.2.4 , необходимо представить зависимость координаты тела от времени в виде одной тригонометрической функции. Для данной в условии функции это можно сделать с помощью введения дополнительного угла. Умножая и деля эту функцию на и используя формулу сложения тригонометрических функций, получим

где - такой угол, что . Из этой формулы следует, что амплитуда колебаний тела - (ответ 4 ).

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Эти настолько распространены, что, пожалуй, и нельзя указать области существования, в которой бы не наблюдались данные физические процессы. Наиболее распространенными сферами исследования природы являются механика, электроника, астрономия, локация и другие.

Объединяет все эти отрасли то, что природа колебательных движений в них одинакова, а, следовательно, и теория, которая описывает эти явления, является универсальной. Например, общепринято, что период представляет собой определенный отрезок времени, в течение которого некий объект совершает одно полное колебание и затем снова возвращается в исходное положение. Наиболее показательным примером этого в механике выступает колебание маятника часов.

Колебания по своим свойствам различают свободные (или собственные) и гармонические. Свободные - это такие, которые вызываются внешними силами, приложенными к предмету и выводящими его из состояния равновесия (в механике: струна музыкального инструмента, грузик, подвешенный на нити и т.д.). Более важное место в теории колебательных процессов занимают гармонические колебания. Именно они составляют ту основу, которая позволяет формулировать закономерности данной теории и рассматривать природу колебаний в различных физических средах (воде, воздухе, газе, вакууме и т.п.).

Исходя из утверждения об универсальности теории колебаний, можно сделать вывод и об универсальности физический единиц, которые отражают величины этих колебаний, независимо от их природы и сферы распространения. Таковыми являются период и частота. Как определяется период колебаний, уже было сказано выше. Частота же колебания определяется как количество совершенных полных колебаний предметов за определенную единицу времени. Период и частота в теории колебаний связаны единой, общей для данной теории формулой. Описывающая период формула имеет вид: f = 1 /T, где f - частота, Т - период (выступает, наряду с частотой, основным параметром данного явления).

Имеются и другие характеристики колебательных процессов, такие как амплитуда, фаза, но их применение обусловлено уже более сложными условиями описания колебаний. Такими условиями являются:

Собственно природа колебательного процесса, то есть, какие именно колебания мы рассматриваем - механические, электромагнитные, циклические или иные;

Среда, в которой происходят колебательные процессы - воздух, вода или иное. Эти условия самым существенным образом влияют на все параметры процесса, в том числе и на период колебаний. Например, для циклических, формула, по которой определяется период колебаний, включает в себя еще и показатель 2πν, который характеризует величину круговых колебаний.

Частота колебаний характеризуется единицей, которая носит имя великого физика - Генриха Герца и обозначается сокращенно: Гц. Исходя из рассмотренной нами формулы, 1 Гц представляет собой величину, равную одному полному колебанию, которое произошло за одну секунду. Этой единицей характеризуется огромное множество параметров, окружающих нас в повседневной жизни. Например, частота переменного тока, который мы потребляем дома, равна 50 Гц. Это значит, что поток электронов в проводнике 50 раз меняет направление своего движения. Частоты могут характеризоваться как небольшими значениями (например, колебания маятника), так и величинами, доходящими до миллиардов колебаний в секунду. Такими, к примеру, являются частоты, характеризующие вычислительные операции в современных компьютерах. Тогда герцы применять для отражения величин становится неудобно, и к ним добавляют кратные значения: кило- (кГц, 1000), мега- (мГц, 1000000), гига- (гГц, 1000000000) и так далее.

Величиной, которая нам показывает период колебаний, являются самые обычные метрические единицы (разы, если можно так выразиться), то есть числовой показатель количества совершенных колебательных движений за определенный промежуток времени.

Определение

Период - это минимальное время, за которое совершается одно полное колебательное движение.

Обозначают период буквой $T$.

где $\Delta t$ - время колебаний; $N$ - число полных колебаний.

Уравнение колебаний пружинного маятника

Рассмотрим простейшую колебательную систему, в которой можно реализовать механические колебания. Это груз массы $m$, подвешенный на пружине, коэффициент упругости которой равен $k\ $(рис.1). Рассмотри вертикальное движение груза, которое обусловлено действием силы тяжести и силы упругости пружины. В состоянии равновесия такой системы, сила упругости равна по величине силе тяжести. Колебания пружинного маятника возникают, когда систему выводят из состояния равновесия, например, слегка дополнительно растянув пружину, после этого маятник предоставляют самому себе.

Допустим, что масса пружины мала в сравнении с массой груза, при описании колебаний ее учитывать не будем. Началом отсчета будем считать точку на оси координат (X), которая совпадает с положением равновесия груза. В этом положении пружина уже имеет удлинение, которое обозначим $b$. Растяжение пружины происходит из-за действия на груз силы тяжести, следовательно:

Если груз смещают дополнительно, но закон Гука еще выполняется, то сила упругости пружины становится равна:

Ускорение груза запишем, помня, что движение происходит по оси X, как:

Второй закон Ньютона для груза принимает вид:

Учтем равенство (2), формулу (5) преобразуем к виду:

Если ввести обозначение: ${\omega }^2_0=\frac{k}{m}$, то уравнение колебаний запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(7\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решением уравнения (7) (это проверяется непосредственной подстановкой) является функция:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Формулы периода колебаний пружинного маятника

Мы получили, что колебания пружинного маятника описывается функцией косинус или синус. Это периодические функции, значит, смещение $x$ будет принимать равные значения через определенные одинаковые промежутки времени, которые называют периодом колебаний. Обозначают период буквой T.

Еще одной величиной, характеризующей колебания является величина обратная периоду колебаний, ее называют частотой ($\nu $):

Период связан с циклической частотой колебаний как:

Выше мы получали для пружинного маятника ${\omega }_0=\sqrt{\frac{k}{m}}$, следовательно, период колебаний пружинного маятника равен:

Формула периода колебаний пружинного маятника (11) показывает, что $T$ зависит от массы груза, прикрепленного к пружине и коэффициента упругости пружины, но не зависит от амплитуды колебаний (A). Данное свойство колебаний называют изохронностью. Изохронность выполняется до тех пор, пока справедлив закон Гука. При больших растяжениях пружины закон Гука нарушается, появляется зависимость колебаний от амплитуды. Подчеркнем, что формула (11) для вычисления периода колебаний пружинного маятника справедлива при малых колебаниях.

Примеры задач на период колебаний

Пример 1

Задание. Пружинный маятник совершил 50 полных колебаний за время равное 10 с. Каков период колебаний маятника? Чему равна частота этих колебаний?

Решение. Так как период - это минимальное время необходимое маятнику для совершения одного полного колебания, то найдем его как:

Вычислим период:

Частота - величина обратная периоду, следовательно:

\[\nu =\frac{1}{T}\left(1.2\right).\]

Вычислим частоту колебаний:

\[\nu =\frac{1}{0,2}=5\ \left(Гц\right).\]

Ответ. $1)\ T=0,2$ с; 2) 5Гц

Пример 2

Задание. Две пружины, имеющие коэффициенты упругости $k_1$ и $k_2$ соединены параллельно (рис.2), к системе присоединен груз массы $M$. Каков период колебаний полученного пружинного маятника, если массами пружин можно пренебречь, сила упругости, действующая на груз, подчиняется закону Гука?

Решение. Воспользуемся формулой для вычисления периода колебаний пружинного маятника:

При параллельном соединении пружин результирующая жесткость системы находится как:

Это означают, что вместо $k$ в формулу для вычисления периода пружинного маятника подставим правую часть выражения (2.2), имеем:

Ответ. $T=2\pi \sqrt{\frac{M}{k_1{+k}_2}}$

Разделы: Физика

Цели урока:

  • познакомить учащихся с величинами, характеризующими колебательное движение: амплитуда, частота, период, фаза колебаний;
  • формировать умения анализировать, сравнивать явления, выделять основное, устанавливать связи между элементами содержания ранее изученного материала;
  • научить применять свои знания для решения учебных задач различного характера;
  • показать значимость данной темы и связь ее с другими науками;
  • развивать умения работы с дополнительной литературой, учебником;
  • воспитывать самостоятельность, трудолюбие, терпимость к мнению другого, прививать культуру умственного труда и интерес к предмету.

Тип урока: изучение нового материала.

Оборудование: нитяные маятники, презентация.

Ход урока

1. Орг. момент. Сообщение учащимся целей и задач урока.

2. Проверка домашнего задания:

Фронтальная беседа.

  • какое движение называется колебательным?
  • какие колебания называют свободными?
  • что такое колебательная система?
  • что называется маятником? Виды маятников.
  • примеры колебательных движений в природе.

3. Новая тема.

Слайд №1. Всюду в нашей жизни мы встречаемся с колебательными движениями: периодически движутся участки сердца и легких, колеблются ветви деревьев при порыве ветра, ноги и руки при ходьбе, колеблются струны гитар, колеблется спортсмен на батуте и школьник, пытающийся подтянуться на перекладине, пульсируют звезды (будто дышат), а возможно и вся Вселенная, колеблются атомы в узлах кристаллической решетки… Остановимся! На прошлом уроке мы начали знакомство с колебательным движением, а сегодня познакомимся с характеристиками этого движения.

Эксперимент №1 с маятниками. Сравним колебания двух одинаковых маятников. Первый маятник колеблется с большим размахом, т. е. его крайние положения находятся дальше от положения равновесия, чем у второго маятника. Слайд №2.

Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний.

Мы будем рассматривать колебания, происходящие с малыми амплитудами.

Обычно амплитуду обозначают буквой А и измеряют в единицах длины - метрах (м), сантиметрах (см) и др. Амплитуду можно измерять также в единицах плоского угла, например в градусах, поскольку дуге окружности соответствует определенный центральный угол, т. е. угол с вершиной в центре окружности (в данном случае в точке О).

Амплитуда колебаний пружинного маятника (см. рис. 49 ) равна длине отрезка ОВ или ОА.

Если колеблющееся тело пройдет от начала колебаний путь, равный четырем амплитудам, то оно совершит одно полное колебание.

Слайд №3. Пример, амплитуда колебаний вершины Останкинской башни в Москве (высота 540 м) при сильном ветре около 2,5 м.

Слайд №4. Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

Период колебаний обычно обозначается буквой Т и в СИ измеряется в секундах (с).

Эксперимент №2. Подвесим к стойке два маятника - один длинный, другой короткий. Отклоним их от положения равновесия на одно и то же расстояние и отпустим. Мы заметим, что по сравнению с длинным маятником короткий за то же время совершает большее число колебаний.

Число колебаний в единицу времени называется частотой колебаний.

Обозначается частота буквой v (“ню”). За единицу частоты принято одно колебание в секунду. Эта единица в честь немецкого ученого Генриха Герца названа герцем (Гц).

Если, например, маятник в одну секунду совершает 2 колебания, то частота его колебаний равна 2 Гц (или 2 с -1), а период колебаний (т. е. время одного полного колебания) равен 0,5 с. Чтобы определить период колебания, необходимо одну секунду разделить на число колебаний в эту секунду, т. е. на частоту.

Таким образом, период колебания Т и частота колебаний v связаны следующей зависимостью:

Т=1/ или =1/Т.

На примере колебаний маятников разной длины приходим к выводу: частота и период свободных колебаний нитяного маятника зависят от длины его нити. Чем больше длина нити маятника, тем больше период колебаний и меньше частота. (Эту зависимость вы будете исследовать при выполнении лабораторной работы № 3.)

Частота свободных колебаний называется собственной частотой колебательной системы.

Не только нитяной маятник, но и любая другая колебательная система имеет определенную частоту свободных колебаний, зависящую от параметров этой системы.

Например, частота свободных колебаний пружинного маятника зависит от массы груза и жесткости пружины.

Эксперимент №3. Теперь рассмотрим колебания двух одинаковых маятников, движущихся следующим образом. В один и тот же момент времени левый маятник из крайнего левого положения начинает движение вправо, а правый маятник из крайнего правого положения движется влево. Оба маятника колеблются с одной и той же частотой (поскольку длины их нитей равны) и с одинаковыми амплитудами. Однако эти колебания отличаются друг от друга: в любой момент времени скорости маятников направлены, в противоположные стороны. В таком случае говорят, что колебания маятников происходят в противоположных фазах.

Если маятники колеблются с одинаковыми частотами, но скорости этих маятников в любой момент времени направлены одинаково, то говорят, что маятники колеблются в одинаковых фазах.

Рассмотрим еще один случай. Если один момент скорости обоих маятников направлены в одну сторону, но через некоторое время они будут направлены в разные стороны, то в таком случае говорят, что колебания происходят с определенной разностью фаз.

Физическая величина, называемая фазой, используется не только при сравнении колебаний двух или нескольких тел, но и для описания колебаний одного тела.

Таким образом, колебательное движение характеризуется амплитудой, частотой (или периодом) и фазой.

В природе и технике широко распространены колебания, называемые гармоническими. Слайд №5.

Периодические изменения во времени физической величины, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.

Слайд №6. Рассмотрим график зависимости смещения от времени х(t), х – смещение, расстояние от положения устойчивого равновесия. Определим по графику амплитуду, период и частоту колебания.

А=1м, Т=20с, =1/20 Гц.

4. Закрепление темы. Решение задач.

Слайд №7. Сердце - это орган, имеющий массу 300 г. С 15 до 50 лет оно бьется со скоростью 70 раз в минуту. В период между 60 и 80 годами оно ускоряет свое движение, достигая примерно 79 ударов в минуту. В среднем это составляет 4,5 тысячи пульсаций в час и 108 тысяч в день. Сердце велосипедиста может быть вдвое больше, чем у человека, не занимающегося спортом, - 1250 кубических сантиметров вместо 750. В обычном режиме этот орган перекачивает 360 литров крови в час, а за всю жизнь - 224 миллиона литров. Столько же, сколько река Сена за 10 минут!

Чему равен период колебаний работы сердца? (0,86 с)

Слайд №8. Небольшие размеры колибри и их способность сохранять постоянную температуру тела требуют интенсивного обмена веществ. Ускоряются все важнейшие функции в организме, сердце делает до 1260 ударов в минуту, увеличивается ритм дыхания - до 600 дыхательных движений за одну минуту. Высокий уровень обмена веществ поддерживается интенсивным питанием - колибри почти непрерывно кормятся нектаром цветов.

Определите частоту колебаний сердца колибри. (21 Гц - частота сокращения сердца.)

5. Домашнее задание: §26-27, упр. 24(3,4,5), подгов. к лаб. раб. №3. Слайд №8.

6. Самостоятельная работа с самопроверкой. Слайды № 9-12.

1 вариант

2 вариант

1. Колебания – это движения тела…
  1. Из положения равновесия.
  2. По кривой траектории.
  3. В вертикальной плоскости.
  4. Обладающее той или иной степенью повторяемости во времени.
1. Интервал времени, за который совершается одно полное колебание, – это…
  1. Смещение.
  2. Частота.
  3. Период.
  4. Амплитуда.

2. Число полных колебаний за 1 с определяет …

  1. Смещение.
  2. Частота.
  3. Период.
  4. Амплитуда.
2. Наибольшее отклонение тела от положения равновесия – это…
  1. Смещение.
  2. Частота.
  3. Период.
  4. Амплитуда.
3. Частота свободных колебаний пружинного маятника равен 10 Гц. Чему равен период колебаний?
  1. 0,1 с.
  2. 10 с.
3. Период свободных колебаний нитяного маятника равен 5 с. Чему равна частота его колебаний?
  1. 0,2 Гц.
  2. 20 Гц
  3. 5 Гц.
  4. 10 Гц.
4. За 6 секунд маятник совершает 12 колебаний. Чему равна частота колебаний?
  1. 0,5 Гц
  2. 72 Гц
4. За 5 секунд маятник совершает 10 колебаний. Чему равен период колебаний?
  1. 0,5 с

Слайд №13. Вариант 1: D, B, C, B. Вариант 2: C, D, A, A.

7. Итоги урока. Оценки за урок.

Литература, используемая при подготовке к уроку:

  1. Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, У.М. Гутник. – М.: Дрофа, 2011.

Самое обсуждаемое
Планеты солнечной системы по порядку Планеты солнечной системы по порядку
Задачи на свободное падение тел: примеры решения задач по кинематике Задачи на свободное падение тел: примеры решения задач по кинематике
Сколько всего, гласных, согласных, шипящих букв и звуков в русском алфавите? Сколько всего, гласных, согласных, шипящих букв и звуков в русском алфавите?


top