Что такое пластиды? Их виды и функции. Особенности строения пластидов Какие пластиды есть в клетках растений

Что такое пластиды? Их виды и функции. Особенности строения пластидов Какие пластиды есть в клетках растений

Клетка — сложная структура, состоит из множества компонентов, называемых органеллами. При этом состав растительной клетки несколько отличается от животной, а основное различие заключается в присутствии пластидов .

Вконтакте

Описание клеточных элементов

Какие компоненты клеток именуются пластидами. Это структурные органоиды клетки, имеющие сложное строение и функции, важные для жизни растительных организмов.

Важно! Пластиды образуются из пропластид, которые находятся внутри клеток меристем или образовательной и имеют гораздо меньший размер, чем зрелый органоид. А еще они делятся, подобно бактериям, на две половины перетяжкой.

Какое имеют пластиды строение под микроскопом рассмотреть сложно, благодаря плотной оболочке они не просвечиваются.

Однако, ученым удалось выяснить, что этот органоид имеет две мембраны, внутри заполнен стромой, аналогичной цитоплазме жидкостью.

Складки внутренней мембраны, уложенные стопочками, образуют граны, которые могут соединяться между собой.

Также внутри присутствуют рибосомы, липидные капли, зерна крахмала. Еще у пластид, особенно у хлоропластов, имеются свои молекулы .

Классификация

Разделяются на три группы по цвету и выполняемым функциям:

  • хлоропласты,
  • хромопласты,
  • лейкопласты.

Хлоропласты

Наиболее глубоко изучены, имеют зеленую окраску. Содержаться в листьях растений, иногда в стеблях, плодах и даже корнях. По внешнему виду похожи на округлые зернышки размером 4-10 микрометров. Малый размер и большое количество значительно увеличивает площадь рабочей поверхности.

Могут отличаться по цвету, это зависит от вида и концентрации содержащегося в них пигмента. Основной пигмент- хлорофилл , также присутствуют ксантофилл и каротин. В природе существует 4 вида хлорофилла, обозначаемых латинскими буквами: а, b, с, е. Первые два типа содержат клетки высших растений и зеленых водорослей, у диатомовых присутствуют только разновидности — а и с.

Внимание! Подобно другим органоидам, хлоропласты способны стареть и разрушаться. Молодая структура способна к делению и активной работе. Со временем их граны разрушаются, а хлорофилл распадается.

Хлоропласты выполняют важную функцию: внутри них происходит процесс фотосинтеза — преобразование солнечного света в энергию химических связей формирующихся углеводов. При этом они могут двигаться вместе с током цитоплазмы или активно передвигаться сами. Так, при слабом освещении они скапливаются у стенок клетки с большим количеством света и поворачиваются к нему большей площадью, а при очень активном освещении, наоборот, встают ребром.

Хромопласты

Приходят на смену разрушенным хлоропластам, бывают желтого, красного и оранжевого оттенков. Цветная окраска формируется благодаря содержанию каротиноидов.

Данные органоиды содержаться в листья, цветах и плодах растений. По форме могут быть округлыми, прямоугольными или даже игольчатыми. Строение аналогично хлоропластам.

Основная функция – придание окраски цветам и плодам, что позволяет привлечь насекомых- опылителей и животных, которые поедают плоды и тем самым способствуют распространению семян растения.

Важно! Ученые строят предположения о роли хромопластов в окислительно-восстановительных процессах клетки в качестве светофильтра. Рассматривается возможность их влияния на рост и размножение растений.

Лейкопласты

Данные пластиды имеют отличия в строении и функциях . Основная задача – запасать питательные вещества впрок, поэтому находятся они преимущественно в плодах, но также могут быть в утолщенных и мясистых частях растения:

  • клубнях,
  • корневищах,
  • корнеплодах,
  • луковицах и других.

Бесцветная окраска не позволяет выделить их в структуре клетки, однако лейкопласты легко разглядеть при добавлении небольшого количества йода, который, взаимодействуя с крахмалом, окрашивает их в синий цвет.

Форма близка к округлой, при этом внутри плохо развита система мембран. Отсутствие складок мембран помогает органоиду при запасании веществ.

Крахмальные зерна увеличиваются в размерах и легко разрушают внутренние мембраны пластиды, как-бы растягивая ее. Это позволяет накопить больше углеводов.

В отличие от других пластид, содержат молекулу ДНК в оформленном . При этом, накапливая хлорофилл, лейкопласты могут превращаться в хлоропласты .

Определяя, какую функцию выполняют лейкопласты, нужно отметить их специализацию, поскольку существует несколько типов, запасающих определенные вид органического вещества:

  • амилопласты накапливают крахмал;
  • олеопласты производят и запасают жиры, при этом последние могут запасаться и в других частях клеток;
  • протеинопласты «берегут» белки.

Помимо накопления, могут выполнять функцию расщепления веществ, для чего существуют ферменты, которые активизируются, когда возникает дефицит энергии или строительного материала.

В такой ситуации ферменты начинают расщеплять запасенные жиры и углеводы до мономеров, чтобы клетка получила необходимую энергию.

Все разновидности пластид, не смотря на особенности строения , обладают способностью превращаться друг в друга. Так, лейкопласты могут преобразоваться в хлоропласты, этот процесс мы видим при позеленении клубней картофеля.

В то же время, по осени хлоропласты превращаются в хромопласты, в результате чего листья желтеют. Каждая клетка содержит только один вид пластид.

Происхождение

Теорий происхождения множество, наиболее обоснованными среди них являются две:

  • симбиоза,
  • поглощения.

Первая рассматривает образование клетки как процесс симбиоза, происходящего в несколько ступеней. В его ходе гетеротрофные и автотрофные бактерии объединяются, получая взаимную выгоду .

Вторая теория рассматривает образование клетки через поглощение более крупными организмами мелких. Однако, при этом не происходит их переваривание, они встраиваются в структуру бактерии, выполняя свою функцию внутри нее. Такое строение оказалось удобным и дало организмам преимущество перед другими.

Виды пластидов в растительной клетке

Пластиды — их функции в клетке и типы

Вывод

Пластиды в растительных клетках – это своеобразная «фабрика», где осуществляется производство, связанное с токсичными промежуточными веществами, высокой энергией и процессами преобразования свободных радикалов.

Это бесцветные или окрашенные тельца в протоплазме растительных клеток, представляющие собой сложную систему внутренних мембран (мембранные органеллы) и выполняющие различные функции. Бесцветные пластиды называют лейкопластами , различно окрашенные (желтого, оранжевого или красного цвета) - хромопластами , зеленые - хлоропластами . В клетке высших растений содержится около 40 хлоропластов в которых происходит фотосинтез . Они, как уже было сказано, способны к автономному размножению, не зависящему от деления клетки. Размеры и форма митохондрий и хлоропластов, наличие в их матриксе кольцевых двухцепочных ДНК и собственных рибосом делают эти органеллы похожими на бактериальные клетки. Существует теория симбиотического происхождения эукариотической клетки , согласно которой предки современных митохондрий и хлоропластов были когда-то самостоятельными прокариотическими организмами.

Пластиды характерны только для растений. Они не найдены у грибов и у большинства животных, исключая некоторых фотосинтезирующих простейших.

Предшественниками пластид являются пропластиды , мелкие, обычно бесцветные образования, находящиеся в делящихся клетках корней и побегов . Если развитие пропластид в более дифференцированные структуры задерживается из-за отсутствия света, в них может появиться одно или несколько проламеллярных телец (скопления трубчатых мембран). Такие бесцветные пластиды называются этиопластами . Этиопласты превращаются в хлоропласты на свету, а из мембран проламеллярных телец формируются тилакоиды . В зависимости от окраски, связанной с наличием или отсутствием тех или иных пигментов, различают три основных типа пластид (см. выше) - хлоропласты , хромопласты и лейкопласты . Обычно в клетке встречаются пластиды только одного типа. Однако установлено, что одни типы пластид могут переходить в другие.

Пластиды - относительно крупные образования клетки. Самые большие из них - хлоропласты - достигают у высших растений 4-10 мкм длины и хорошо различимы в световой микроскоп. Форма окрашенных пластид чаще всего линзовидная или эллиптическая. В клетках встречаются, как правило, несколько десятков пластид, но у водорослей, где пластиды нередко крупны и разнообразны по форме, число их иногда невелико (1-5). Такие пластиды называются хроматофорами . Лейкопласты и хромопласты могут иметь различную форму.

Основная функция хлоропластов - фотосинтез. Центральная роль в этом процессе принадлежит хлорофиллу , точнее - нескольким его модификациям. Световые реакции фотосинтеза осуществляются преимущественно в гранах , темновые - в строме

Пластиды - органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды - лейкопласты ;
  • окрашенные - хлоропласты (зеленого цвета);
  • окрашенные - хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга - лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов - в хромопласты.

Строение и функции хлоропластов

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент - хлорофилл.

Основная функция хлоропласт - фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца - граны и мембранные каналы.


Граны (размером около 1мкм) - пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.


В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные - a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов - зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые - бактериохлорофилл b, зеленые бактерии - c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл - единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях - поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.


Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты - это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.


Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Разновидности лейкопластов:

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Сводная таблица строения и функций пластид

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранная органелла, с гранами и мембранными канальцами Органелла с не развитой внутренней мембранной системой Мелкие органеллы, находятся в частях растения, скрытых от света
Окрас Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Округлая Многоугольная Шаровидная
Функции Фотосинтез Привлечение потенциальных распространителей растений Запас питательных веществ
Заменимость Переходят в хромопласты Не изменяются, это последняя стадия развития пластид Превращаются в хлоропласты и хромопласты

Пластиды.

Пластиды высших растений бывают 3-х типов. У низших (водорослей, например) они более разнообразны.

    хлоропласты (Хлорос – зеленые) по форме похожи на зерно чечевицы. Поэтому есть название – хлорофилловые зерна. Пигмент хлорофилл придает растениям зеленый цвет.

    Хромопласты – (Хромос –цвет) окрашены различно. Образованы пигментами красного, желтого, оранжевого цвета.

    Лейкопласты (бесцветные).

Хлоропласты находятся в зеленых частях растений. Все пластиды всегда находятся только в цитоплазме растительных клеток. Ни в вакуолях, ни в оболочке пластид не бывает. Цитоплазма – часть протопласта. В виде геля или золя. Состоит из живой части и органоидов: кристаллические белковые зерна, мембранные системы. Основной органоид – ядро. Хлоропласты по консистенции полужидкие, в них происходит фотосинтез.

Фотосинтез – сложный биохимический процесс, комплекс биохимических реакций. Суммарное уравнение фотосинтеза –

6Н 2 0+6СО 2 + h→С 6 Н 12 О 6 + 6О 2 .

Фотосинтез – многоступенчатый процесс. Переносчик ē – цитохромы С. Роль фотосинтеза – космическая. Ее трудно переоценить. В результате фотосинтеза ежегодно образуется 400 млрд тонн органических веществ. При этом связывается в процессе фотоситеза 160 млрд тонн углевода. К счастью, столько же органических веществ и разлагается в результате жизнедеятельности человека, животных, микроорганизмов. Микроорганизмы возвращают в атмосферу СО 2 . Иначе планета была бы завалена неразложенной органикой, истощили запас углекислого газа, которого в атмосфере 0,3 – 0,03%.

Масса растений в 220 раз больше массы всех животных. В фундаменте цепей питания находятся растения. Однако по количеству видов растения значительно уступают. Насекомых более 1 млн видов. Всех растений – 500 тыс видов.

Строение хлоропласта.

Хлоропласт представляет собой двойную белково – липоидную мембрану. Двойная мембрана есть еще только у митохондрий, у остальных органелл – одинарная. Тело хлоропласта – строма, полужидкая. В нее погружены различные мембранные структуры. Их 2 типа: плоские дисковидные мешочки, уложенные стопочками – граны. На мембранах гран находится пигмент хлорофилл – источник энергии для фотосинтеза. Граны связаны между собой более узкими мембранами – тилакоидами стромы. Не имеют форму дисков. Их совокупность образует единую систему. Синтез органических веществ происходит в строме. Кроме хлорофилла есть и другие пигменты – красный – каротин, желтый – ксантофилл, их меньше, чем хлорофиллов.

Кроме пигментов содержится ДНК – вещество наследственности, РНК – посредник в переносе наследственной информации, рибосомы. Причем, синтез белка в хлоропластах не зависит от ядерной ДНК. Если белок синтезируется, то он присутствует в биосинтезе.

Внутри стромы находятся шаровидные образования, крахмалистые – результат фотосинтеза, трансформируется в другие части клетки.

Хромопласты – имеют различные оттенки красного, желтого, оранжевого цветов и находятся в ярко – окрашенных частях растений. Например, лепестки цветов, поды, корнеплоды – хромопласты придают им яркую окраску. Форма хромопластов неодинакова даже в пределах одной клетки. Зрелые хромопласты – твердые. Цвет зависит от соотношения каротина и ксантофилла. Т.к. эти пигменты откладываются в виде кристаллов, то их различное взаиморасположение придает различную форму пластидам. Роль хромопластов заключается в том, что яркая окраска венчиков привлекает насекомых – опылителей. Яркие плоды – привлекательны для животных, распространяющих семена. Хромопласты содержатся в корнеплодах. Морковь, содержит каротин = провитамин А. В плодах шиповника, рябины, яркие румяные яблоки, желтые лютики, оранжевые настурции, летнее разнотравье – результат присутствия хромопластов. Плоды вишни, сливы окрашены антоцианом клеточного сока. Белые венчики результат отсутствия пигментов, или наличия лейкопластов. Тем не менее, белые душистые цветки ландыша в хвойном лесу привлекают насекомых ярким белым пятном.

Лейкопласты – бесцветные. Располагаются в таких частях растений как кожица листьев, корневища, корни, корнеплоды, клубни картофеля. Не имеют пигментов, поэтому бесцветные. С трудом наблюдаются в микроскоп. Роль лейкопластов – накопление питательных веществ, увеличение размеров, определяют форму, тогда их называют по веществам: если накапливается крахмал, то образуются крахмальные зерна = амилопласты; если масло в виде капель = олеинопласты (элайопласты); если белки = называются протеинопласты-белковые зерна.

Форма лейкопластов – видовой признак.

Все пластиды имеют общее происхождение, поэтому могут превращаться друг в друга. Например, осеннее изменение окраски листьев – хлоропласты превращаются в хромопласты. При понижении температуры распад хлорофилла происходит быстрее, чем распад каротиноидов. Позеленение бесцветного ростка (глазки картофеля) – лейкопласты переходят в хлоропласты. Хромопласты – конечный продукт превращения. Хромопласты не могут превращаться в другие структуры. Яблоки, шиповник превращаются из зеленых в красные – аналогичный процесс взаимоперехода пластид. Если зеленые побеги держать в темноте, то они светлеют.

Пластиды не могут синтезироваться из других веществ.

Гетеротрофы питались фаго- или пиноцитозом. Полагают, что при встрече клеток гетеротрофов и цианобактерий образовывались пищеварительные вакуоли, клетки переваривались, а питательные вещества использовались гетеротрофами. Поскольку в результате попадала часть веществ фотосинтеза, то постепенно перестраивались биохимические процессы. Такой симбиоз был выгоден для обоих организмов. Гетеротрофы получали органические вещества, а синезеленые водоросли – постоянство среды, защиту, углекислый газ, воду. В пользу этой гипотезы говорит двойная мембрана. Одна мембрана – принадлежность бактерии,– пищеварительной вакуоли гетеротрофа, а другая – оболочка сине-зеленой водоросли. Митохондрии имеют также симбиотическое происхождение.

Доказательством этой гипотезы служит автономное поведение хлоропластов внутри клеток, собственная биосинтетическая система. Размножение делением независимо от ядра клетки.

Недостаток теории: сине-зеленые водоросли способны к самостоятельному существованию на примитивном уровне. У современных – другой биохимический состав, другие пигменты, хлорофилл, другие запасные питательные вещества, не образуется крахмал.

Чем отличаются растительные клетки от животных? Ответ кроется в окрасе растений: их расцветка зависит от содержания пигмента в клетках. Эти пигменты накапливаются в специальных органеллах, которые называются пластидами.

в биологии?

Отличием от животных является наличие хлоропластов, лейкопластов и хромопластов. Эти органеллы отвечают за ряд функций, среди которых явно доминирует процесс фотосинтеза. Именно пигмент, содержащийся в пластидах растений, отвечает за их окрас.

В клетке любого эукариотического организма выделяют немембранные, одномембранные и двухмембранные органеллы. Пластиды и митохондрии относятся к последнему типу клеточных структур, т. к. они окружены двумя слоями ЦПМ.

Что такое пластиды клетки? Виды пластид

  1. Хлоропласты. Основные двухмембранные органеллы растительных клеток, отвечающие за Они состоят из тилакоидов, на которых располагаются фотосинтезирующие комплексы. Функция тилакоидов - увеличение активной поверхности органеллы. Что такое зеленые пластиды? которые содержат пигменты зеленого цвета - хлорофиллы. Выделяют несколько групп этих молекул, каждая из которых отвечает за свои специфические функции. У высших растений наиболее распространен хлорофилл а , который является главным акцептором солнечной энергии при фотосинтезе.
  2. Лейкопласты. Бесцветные пластиды, которые выполняют запасающую функцию в Они могут иметь неправильную форму, начиная от шаровидной и заканчивая веретеновидной. Лейкопласты часто скапливаются вокруг ядра клетки, а в микроскопе их можно обнаружить только в случае большого количества гранул. В зависимости от природы запасаемого вещества различают три типа лейкопластов. Амилопласты служат вместилищем для углеводов, которые растение хочет сохранить до определенного момента. Протеопласты запасают различные белки. Олеопласты скапливают масла и жиры, которые являются источником липидов. Вот что такое пластид, который выполняет функцию запасания.
  3. Хромопласты. Последний тип пластид, который имеет характерный желтый, оранжевый или даже красный цвет. Хромопласты - это конечная стадия развития хлоропластов, когда хлорофилл разрушается, и в пластидах остаются только жирорастворимые каротиноиды. Хромопласты содержатся в лепестках цветов, зрелых плодах и даже в стволах растений. Точное значение этих органелл точно неизвестно, однако предполагают, что они являются вместилищем для каротиноидов, а также придают растениям специфическую окраску. Эта окраска привлекает насекомых-опылителей, что способствует размножению растений.

Лейкопласты и хромопласты не способны к фотосинтезу. Хлорофилл в этих органеллах редуцировался или исчез, поэтому их функция координально поменялась.

Роль хлоропластов в передаче генетической информации

Что такое не только энергетическая станция клетки, но и хранилище части наследственной информации клетки. Она представлена в виде кольцевой молекулы ДНК, что напоминает строение нуклеоида прокариот. Это обстоятельство дает возможность предполагать симбионтное происхождение пластид, когда бактериальные клетки поглощаются клетками растений, теряя свою автономию, однако оставляя некоторые гены.

ДНК хлоропластов относится к цитоплазматической наследственности клетки. Она передается только с помощью половых клеток, детерминирующих женский пол. Спермии не могут передать мужскую ДНК пластид.

Та как хлоропласты - это полуавтономные органеллы, многие белки синтезируются именно в них. Также при делении эти пластиды самостоятельно реплицируются. Однако большая часть белков хлоропластов синтезируются, используя информацию с ДНК ядра. Вот что такое пластид с точки зрения генетики и молекулярной биологии.

Хлоропласт - энергетическая станция клетки

В процессе фотосинтеза на тилакоидах хлоропластов протекает множество биохимических реакций. Их основная задача - это синтез глюкозы, а также молекул АТФ. Последние несут в своих химических связях большое количество энергии, которая жизненно необходима клетке.

Что такое пластид? Это источник энергии наряду с митохондриями. Процесс фотосинтеза делится на световую и темновую стадии. В процессе световой стадии фотосинтеза происходит присоединение фосфорных остатков к молекулам АДФ, и на выходе клетка получает АТФ.


Самое обсуждаемое
«Социальная рефлексия Понятие в философии «Социальная рефлексия Понятие в философии
Люся была мягко настойчива (1) и (2) хотя вспомнить всё было трудно (3) постепенно старушка рассказала (4) как было дело Диагностическая
работа по русскому языку Люся была мягко настойчива (1) и (2) хотя вспомнить всё было трудно (3) постепенно старушка рассказала (4) как было дело Диагностическая работа по русскому языку
Общее уравнение плоскости в пространстве Общее уравнение плоскости в пространстве


top