Отношение железа к кислотам и щелочам. Распространение в природе

Отношение железа к кислотам и щелочам. Распространение в природе

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.


Известен людям еще с древности: старинные предметы быта, выполненные из этого материала, ученые приписывают к IV тысячелетию до нашей эры.

Жизнь человека невозможно представить без железа. Считается, что железо используется для промышленных нужд чаще, чем другие металлы. Из него изготавливают важнейшие конструкции. Также железо в небольших количествах содержится в крови. Именно содержание двадцать шестого элемента окрашивает кровь в красный цвет.

Физические свойства железа

В кислороде железо горит, образуя оксид:

3Fe + 2O₂ = Fe₃O₄.

При нагревании железо может реагировать с неметаллами:

Также при температуре 700-900 °С вступает в реакцию с водяным паром:

3Fe + 4H₂O = Fe₃O₄ + 4H₂.

Соединения железа

Как известно, у оксидов железа есть ионы с двумя степенями окисления: +2 и + 3. Знать это крайне важно, ведь для разных элементов будут проводиться совершенно разные качественные реакции.

Качественные реакции на железо

Качественная реакция нужна для того, чтобы без труда можно было определить присутствие ионов одного вещества в растворах или примесях другого. Рассмотрим качественные реакции двухвалентного и трехвалентного железа.

Качественные реакции на железо (III)

Определить содержание ионов трехвалентного железа в растворе можно с помощью щелочи. При положительном результате образуется основание - гидроксид железа (III) Fe(OH)₃.


Гидроксид железа (III) Fe(OH)₃

Полученное вещество нерастворимо в воде и имеет бурую окраску. Именно бурый осадок может свидетельствовать о наличии ионов трехвалентного железа в растворе:

Fe­Cl₃ + 3NaOH = Fe(OH)₃↓+ 3Na­Cl.

Также определить ионы Fe(III) можно с помощью K₃.

Раствор хлорида железа смешивают с желтоватым раствором кровяной соли. В результате можно увидеть красивый синеватый осадок, который и будет свидетельствовать о том, что в растворе присутствуют ионы трехвалентного железа. вы найдете зрелищные опыты на изучение свойств железа.

Качественные реакции на железо (II)

Ионы Fe²⁺ вступают в реакцию с красной кровяной солью K₄. Если при добавлении соли образуется синеватый осадок, то эти ионы присутствуют в растворе.


Вы знаете, что железо защищает планету от «космических атак»? Благодаря огромным скоплениям этого элемента формируется магнитное поле Земли. Как экран, поле защищает ее от астероидов...

Железо играет роль не только в таких глобальных вещах, но и в нашей повседневной жизни: сталь и большинство сплавов созданы именно на основе этого элемента. Таким образом, всё, от столовых приборов до автомобилей и микроэлектроники, не могло бы работать без железа .

Наконец, без него была бы невозможна и наша жизнь, так как этот минерал входит в состав гемоглобина - содержимого эритроцитов, благодаря которым ткани получают возможность использовать кислород. Еще множество полезных свойств скрывает в себе этот замечательный элемент. Подробнее о том, в чем заключаются функции железа для нашего здоровья - в этой статье.

Содержание железа в продуктах (на 100 г):

Печень 10-20 мг
Дрожжи 18 мг
Морская капуста 16 мг
Чечевица 12 мг
Гречка 8,2 мг
Желток 7,2 мг
Кролик 4,4 мг
Черная икра 2,5 мг

Что собой представляет железо?

Это металл. В составе органов и тканей железо находится в приблизительном количестве 3-5 граммов. Этого немного, но организму вполне хватает такой небольшой дозы для того, чтобы успешно продолжать свое существование. Четыре пятых всего железа приходится на гемоглобин, остальная часть рассеяна по организму и распределена в печени , мышцах, костях и т.д. Некоторая часть внутреннего железа входит в состав ферментов.

Со временем происходит естественная потеря минерала, в связи с чем человеку необходимо постоянное поступление некоторых дозировок железа. Оно теряется с мочой и потовой жидкостью, у женщин расход железа также связан с ежемесячными потерями во время менструаций.

Продукты питания, богатые железом

Элемент настолько распространен в природе, что железо присутствует в составе большинства продуктов питания. Самыми лучшими источниками являются животные - мясо и печень. В них же железо находится в наиболее усвояемой форме. В растительной пище его обычно меньше, чем в животной, но это тоже важный источник поступления минерала. Он присутствует в цитрусовых, гранатах, свекле, гречке, бобовых, орехах, тыкве, яблоках, морской капусте, хурме.

Суточная потребность в железе

Как правило, у мужчин потребность в витаминах и минералах больше, чем у женщин, но в данном случае все не так: более высокие дозировки железа нужны женщинам. Им требуется 18 мг минерала, тогда как мужчинам порядка 10 мг. Для детей норма точно не определена, по разным источникам, она может составлять от 4 до 15 мг.

Увеличение потребности в железе

Повышенная потребность в железе присуща следующим группам лиц:

Женщинам в период после менструаций. Кровопотеря, пусть и небольшая, требует компенсации содержания гемоглобина в крови.
. Беременным и кормящим. В период беременности осуществляется значительный расход железа на построение организма плода, а кормящие матери тратят свое железо на питание ребенка (оно проникает в грудное молоко). Буквально у каждой второй беременной наблюдаются признаки дефицита железа, что говорит о значительном повышении потребности в этом элементе у будущих мам.
. После травм, кровопотерь, серьезных хирургических операций.

Железо - очень ценный элемент. В связи с этим организм научился использовать его повторно. При естественном разрушении старых эритроцитов специальные белки-переносчики захватывают освободившееся железо и переносят его в органы кроветворения, где он снова используется.

Однако потери минерала все равно достаточно велики, так что в повседневной жизни многим людям требуется дополнительное применение железа. Если у Вас потребность в этом элементе повышена, стоит начать прием пищевых добавок с содержанием этого элемента.

Усвоение железа из пищи

Даже в идеальных условиях из пищи всасывается не более 10% поступившего железа. Существует ряд факторов, которые еще больше снижают эту цифру. В то же время, есть определенные факторы, которые всасываемость минерала повышают. Что же определяет степень усвоения железа?

1. Источник. В животных продуктах железо содержится в легкой для усвоения двухвалентной форме. В растительных оно трехвалентное. Чтобы его усвоить и «пустить в ход», организм должен потратить энергию, чтобы восстановить минерал до двухвалентной формы. Именно поэтому большая часть железа, поступившего с гречкой или гранатовым соком, не идет организму на пользу.
2. Здоровье органов пищеварения . При пониженной кислотности желудочного сока, гастрите и энтерите всасываемость железа существенно снижается. При здоровом пищеварительном тракте она оптимальна.
3. Состав пищи.

4. Железо лучше усваивается в присутствии витамина С , органических кислот овощей и фруктов, аминокислот лизина и гистидина, а также некоторых углеводов, таких как фруктоза и сорбит. Таким образом, мясо и печень всегда следует сочетать со свежим овощным салатом.

5. Железо хуже усваивается в присутствии дубильных веществ, пищевых волокон (они «собирают» на себя молекулы железа и выводят их из организма), фитина, щавелевой кислоты. Это означает, что если вы стремитесь получить больше железа, рекомендуется избегать слишком частого употребления таких продуктов как бобовые, щавель, шпинат, отруби. Достаточно сильным антагонистом железа является кальций, содержащие его продукты (главным образом молочные) угнетают его всасывание.

Биологическая роль железа

Функции железа таковы:

Является незаменимым элементом для кроветворения, сырьем для образования дыхательного пигмента гемоглобина и формирования эритроцитов.
. Важен для синтеза гормонов щитовидной железы
. Укрепляет иммунитет , способствует повышению защитных сил организма
. Улучшает работу некоторых витаминов, таких как витамин В6 , В12 , В9
. Улучшает эффекты ряда микроэлементов, таких как кобальт, марганец, медь
. Входит в состав ферментов, обеспечивающих обезвреживание вредных веществ в организме
. Обеспечивает возможность дыхания тканей, а это дает не только оздоровительный, но и косметический эффект. При нормальном поступлении железа в организм у человека остается хорошим состояние кожи, волос, ногтей
. Защищает от переутомления, хронической усталости
. Имеет большое значение в работе нервной системы .

Признаки нехватки железа

Недостаток минерала и необходимость в регулярном применении железа - чрезвычайно распространенное явление. Самым первым и главным признаком дефицита элемента в организме является анемия.

Уменьшение числа эритроцитов и уровня гемоглобина в крови приводит к таким симптомам: слабость, быстрое наступление утомления, неустойчивость к физическим нагрузкам, запоры или диарея, нарушения аппетита и вкуса, онемение и зябкость в конечностях, бледность и сухость кожи, ухудшение состояния ногтей, выпадение волос, ослабление иммунитета и т.д. Зачастую именно эти признаки позволяют догадаться о дефиците железа в организме. Человек обращается к врачу, его обследуют и выявляют анемию.

Признаки избытка железа

Даже при питании продуктами, содержащими высокие концентрации железа, не возникает его избытка. Это связано с тем, что организм самостоятельно «фильтрует» излишки минеральных соединений и берет ровно столько железа, сколько ему нужно.

Гораздо сложнее ему противостоять сверхвысоким дозировкам железа, поступающим с препаратами. Если использовать железосодержащие средства и пищевые добавки слишком интенсивно, возможно возникновение отравления. Оно дает о себе знать рвотой, головной болью, нарушениями стула и другими симптомами.

Избыток железа также наблюдается при редком заболевании под названием гемохроматоз. При этой болезни организм осуществляет патологическое накопление железа, что проявляется серьезными нарушениями со стороны печени и других органов.

Факторы, влияющие на содержание в продуктах железа

Если длительное время проводить кулинарную обработку продуктов, содержание усвояемого железа в них снижается, так как оно переходит в форму, малодоступную для всасывания. Поэтому, если Вы покупаете мясо или печень, выбирайте продукты наивысшего качества, которые не будут слишком жесткими и которые не надо будет слишком долго варить или жарить.

Одним из наиболее распространенных металлов в земной коре после алюминия считается железо. Физические и химические свойства его таковы, что оно обладает отличной электропроводностью, теплопроводностью и ковкостью, имеет серебристо-белый цвет и высокую химическую реакционную способность быстро коррозировать при высокой влажности воздуха или больших температурах. Находясь в мелкодисперсном состоянии, оно в чистом кислороде горит и самовоспламеняется на воздухе.

Начало истории железа

В третьем тысячелетии до н. э. люди стали добывать и научились обрабатывать бронзу и медь. Широкого применения из-за дороговизны они не получили. Продолжались поиски нового металла. История железа началась в первом веке до н. э. В природе его можно встретить только в виде соединений с кислородом. Для получения чистого металла необходимо отделить последний элемент. Расплавить железо долго не удавалось, так как его надо было нагреть до 1539 градусов. И только с появлением сыродутных печей в первом тысячелетии до новой эры стали получать этот металл. На первых порах он был хрупким, содержал много шлаков.

С появлением горнов качество железа значительно улучшилось. Дальнейшую обработку оно проходило в кузнеце, где ударами молота отделялся шлак. Ковка стала одним из главных видов обработки металла, а кузнечное дело незаменимой отраслью производства. Железо в чистом виде - это очень мягкий металл. В основном его используют в сплаве с углеродом. Эта добавка усиливает такое физическое свойство железа, как твердость. Дешевый материал вскоре широко проник во все сферы деятельности человека и сделал переворот в развитии общества. Ведь еще в древние времена железные изделия покрывались толстым слоем золота. Оно имело высокую цену по сравнению с благородным металлом.

Железо в природе

Одного алюминия в литосфере содержится больше, чем железа. В природе его можно встретить только в виде соединений. Трехвалентное железо, вступая в реакцию, окрашивает почву в бурый цвет и придает песку желтоватый оттенок. Оксиды и сульфиды железа разбросаны в земной коре, иногда наблюдаются скопления минералов, из которых впоследствии и добывают металл. Содержание двухвалентного железа в некоторых минеральных источниках придает воде особый привкус.

Ржавая вода, текущая из старых водопроводных труб, окрашивается за счет трехвалентного металла. Его атомы находятся и в организме человека. Они содержатся в гемоглобине (железосодержащем белке) крови, который снабжает организм кислородом и выводит углекислый газ. В составе некоторых метеоритов содержится чистое железо, иногда встречаются целые слитки.

Какими физическими свойствами железо обладает?

Это пластичный серебристо-белого цвета металл с сероватым оттенком, имеющий металлический блеск. Он является хорошим проводником электрического тока и теплоты. Благодаря пластичности он прекрасно поддается ковке и прокатке. Железо не растворяется в воде, но разжижается в ртути, плавится при температуре 1539 и кипит при 2862 градусов по Цельсию, имеет плотность 7,9 г/см³. Особенностью физических свойств железа является то, что металл притягивается магнитом и после аннулирования внешнего магнитного поля хранит намагниченность. Используя эти свойства его можно применять для изготовления магнитов.

Химические свойства

Железо обладает следующими свойствами:

  • на воздухе и в воде легко окисляется, покрываясь ржавчиной;
  • в кислороде накаленная проволока горит (при этом образуется окалина в виде оксида железа);
  • при температуре 700-900 градусов по Цельсию вступает в реакцию с парами воды;
  • при нагревании реагирует с неметаллами (хлором, серой, бромом);
  • вступает в реакции с разбавленными кислотами, в результате получаются соли железа и водород;
  • не растворяется в щелочах;
  • способно вытеснить металлы из растворов их солей (железный гвоздь, в растворе медного купороса, покрывается красным налетом, - это выделяется медь);
  • в концентрированных щелочах при кипячении проявляется амфотерность железа.

Особенность свойств

Одним из физических свойств железа является ферромагнитность. На практике с магнитными свойствами этого материала приходится встречаться часто. Это - единственный металл, который обладает такой редкостной чертой.

Под действием магнитного поля происходит намагничивание железа. Сформировавшиеся магнитные свойства металл еще долго сохраняет и сам остается магнитом. Такое исключительное явление объясняется тем, что структура железа содержит большое количество свободных электронов, способных передвигаться.

Запасы и добыча

Одним из самых распространенных элементов на земле является железо. По содержанию в земной коре занимает четвертое место. Известно множество руд, которые содержат его, например, магнитный и бурый железняк. Металл в промышленности получают в основном из руд гематита и магнетита при помощи доменного процесса. Вначале происходит его восстановление углеродом в печи при высокой температуре 2000 градусов по Цельсию.

Для этого сверху в доменную печь подают железную руду, кокс и флюс, а снизу нагнетается поток горячего воздуха. Также применяют и прямой процесс получения железа. Измельченную руду перемешивают со специальной глиной, получая окатыши. Далее их обжигают и с помощью водорода обрабатывают в шахтной печи, где оно легко восстанавливается. Получают твердое железо, а потом переплавляют его в электрических печах. Чистый металл восстанавливают из оксидов при помощи электролиза водных растворов солей.

Преимущества железа

Основные физические свойства вещества железа дают ему и сплавам следующие преимущества перед другими металлами:


Недостатки

Кроме большого числа положительных качеств, есть и ряд отрицательных свойств металла:

  • Изделия подвержены коррозии. Для устранения этого нежелательного эффекта с помощью легирования получают нержавеющие стали, а в остальных случаях делают специальную антикоррозийную обработку конструкций и деталей.
  • Железо накапливает статическое электричество, поэтому изделия, содержащие его, подвергаются электрохимической коррозии и также требуют дополнительной обработки.
  • Удельный вес металла составляет 7,13 г/см³. Это физическое свойство железа придает конструкциям и деталям повышенный вес.

Состав и структура

У железа по кристаллическому признаку есть четыре модификации, которые отличаются структурой и параметрами решетки. Для выплавки сплавов именно наличие фазовых переходов и легирующих добавок имеет существенное значение. Различают следующие состояния:

  • Альфа-фаза. Она сохраняется до 769 градусов по Цельсию. В этом состоянии железо сохраняет свойства ферромагнетика и обладает объемно-центрированной решеткой кубического типа.
  • Бета-фаза. Существует при температуре от 769 до 917 градусов по Цельсию. Имеет немного другие параметры решетки, чем в первом случае. Все физические свойства железа остаются прежними за исключением магнитных, их оно утрачивает.
  • Гамма-фаза. Строение решетки становится гранецентрированным. Такая фаза проявляется в диапазоне 917-1394 градусов Цельсия.
  • Омега-фаза. Такое состояние металла появляется при температуре выше 1394 градусов Цельсия. От прежней отличается только параметрами решетки.

Железо - самый востребованный металл в мире. Больше 90 процентов всего металлургического производства приходится именно на него.

Применение

Люди начали использовать сначала метеоритное железо, которое ценили выше золота. С тех пор область применения этого металла только расширялась. Ниже представлено применение железа, на основе его физических свойств:

  • ферромагнитные оксиды используют для производства магнитных материалов: промышленных установок, холодильников, сувениров;
  • оксиды железа применяют как минеральные краски;
  • хлорид железа незаменим в радиолюбительской практике;
  • сульфаты железа используют в текстильной промышленности;
  • магнитная окись железа - один из важных материалов для производства устройств долговременной компьютерной памяти;
  • ультрадисперсный порошок железа находит применение в черно-белых лазерных принтерах;
  • прочность металла позволяет изготовлять оружие и броню;
  • износостойкий чугун можно использовать для производства тормозов, дисков сцепления, а также деталей для насосов;
  • жаростойкий - для доменных, термических, мартеновских печей;
  • жаропрочный - для компрессорного оборудования, дизельных двигателей;
  • высококачественная сталь используется для газопроводов, корпуса отопительных котлов, сушилок, стиральных и посудомоечных машин.

Заключение

Под железом часто подразумевают не сам метал, а его сплав - низкоуглеродистую электротехническую сталь. Получение чистого железа довольно сложный процесс, и поэтому его используют только для производства магнитных материалов. Как уже отмечалось, что исключительное физическое свойство простого вещества железа - это ферромагнетизм, т. е. способность намагничиваться в присутствии магнитного поля.

Магнитные свойства чистого металла до 200 раз превышают такие же показатели технической стали. На это свойство влияет и зернистость металла. Чем крупнее зерно, тем выше магнитные свойства. В некоторой степени оказывает влияние и механическая обработка. Такое чистое железо, удовлетворяющее этим требованиям, используют для получения магнитных материалов.

Чистое железо получают различными методами. Наибольшее значение имеют метод термического разложения пентакарбонила железа (см. § 193) и электролиз водных растворов его солей.

Во влажном воздухе железо быстро ржавеет, т. е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа(III):

При недостатке кислорода или при его затрудненном доступе образуется смешанный оксид Fe 3 O 4 (FeO·Fe 2 O 3):

Железо растворяется в соляной кислоте любой концентрации:

Аналогично происходит растворение в разбавленной серной кислоте:

В концентрированных растворах серной кислоты железо окисляется до железа(III):

Однако в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит.

В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

При высоких концентрациях HNO 3 растворение замедляется и железо становится пассивным.

Для железа характерны два ряда соединений: соединения железа(II) и соединения железа(III). Первые отвечают оксиду железа (II), или закиси железа, FeO, вторые - оксиду железа(III), или окиси железа, Fe 2 O 3 .

Кроме того, известны соли железной кислоты H 2 FeO 4 , в которой степень окисленности железа равна +6.

Соединения железа(II).

Соли железа(II) образуются при растворении железа в разбавленных кислотах, кроме азотной. Важнейшая из них - сульфат железа(II), или железный купорос, FeSO 4 ·7H 2 O, образующий светло-зеленые кристаллы, хорошо растворимые в воде. На воздухе железный купорос постепенно выветривается и одновременно окисляется с поверхности, переходя в желто-бурую основную соль железа(III).

Сульфат железа(II) получают путем растворения обрезков стали в 20-30%-ной серной кислоте:

Сульфат железа(II) применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей.

При нагревании железного купороса выделяется вода и получается белая масса безводной соли FeSO 4 . При температурах выше 480°C безводная соль разлагается с выделением диоксида и триоксида серы; последний во влажном воздухе образует тяжелые белые пары серной кислоты:

При взаимодействии раствора соли железа(II) со щелочью выпадает белый осадок гидроксида железа(II) Fe(OH) 2 , который на воздухе вследствие окисления быстро принимает зеленоватую, а затем бурую окраску, переходя в гидроксид железа (III)

Безводный оксид железа(II) FeO можно получить в виде черного легко окисляющегося порошка восстановлением оксида железа(III) оксидом углерода(II) при 500°C:

Карбонаты щелочных металлов осаждают из растворов солей железа(II) белый карбонат железа(II) FeCO 3 . При действии воды, содержащей CO 2 , карбонат железа, подобно карбонату кальция, частично переходит в более растворимую кислую соль Fe(HCO 3)2 . В виде этой соли железо содержится в природных железистых водах.

Соли железа (II) легко могут быть переведены в соли железа (III) действием различных окислителей - азотной кислоты, перманганата калия, хлора, например:

Ввиду способности легко окисляться, соли железа(II) часто применяются как восстановители.

Соединения железа (III).

Хлорид железа (III) FeCl 3 представляет собой темно-коричневые с зеленоватым отливом кристаллы. Это вещество сильно гигроскопично; поглощая влагу из воздуха, оно превращается в кристаллогидраты, содержащие различное количество воды и расплывающиеся на воздухе. В таком состоянии хлорид железа (III) имеет буро-оранжевый цвет. В разбавленном растворе FeCl 3 гидролизуется до основных солей. В парах хлорид железа (III) имеет структуру, аналогичную структуре хлорида алюминия (стр. 615) и отвечающую формуле Fe 2 Cl 6 ; заметная диссоциация Fe 2 Cl 6 на молекулы FeCl 3 начинается при температурах около 500°C.

Хлорид железа (III) применяют в качестве коагулянта при очистке воды, как катализатор при синтезах органических веществ, в текстильной промышленности.

Сульфат железа (III) Fe 2 (SO 4)3 - очень гигроскопичные, расплывающиеся на воздухе белые кристаллы. Образует кристаллогидрат Fe 2 (SO 4)3 ·9H 2 O (желтые кристаллы). В водных растворах сульфат железа (III) сильно гидролизован. С сульфатами щелочных металлов и аммония он образует двойные соли - квасцы, например железоаммонийные квасцы (NH 4)Fe(SO 4)2 ·12H 2 O - хорошо растворимые в воде светло-фиолетовые кристаллы. При прокаливании выше 500°C сульфат железа (III) разлагается в соответствии с уравнением:

Сульфат железа (III) применяют, как и FeCl 3 , в качестве коагулянта при очистке воды, а также для травления металлов. Раствор Fe 2 (SO 4)3 способен растворять Cu 2 S и CuS с образованием сульфата меди(II) это используется при гидрометаллургическом получении меди.

При действии щелочей на растворы солей железа (III) выпадает красно-бурый гидроксид железа (III) Fe(OH) 3 , нерастворимый в избытке щелочи.

Гидроксид железа (III) - более слабое основание, чем гидроксид железа (II) это выражается в том, что соли железа (III) сильно гидролизуются, а со слабыми кислотами (например, с угольной, сероводородной) Fe(OH) 3 солей не образует. Гидролизом объясняется и цвет растворов солей железа (III): несмотря на то, что Fe 3+ почти бесцветен, содержащие его растворы окрашены в желто-бурый цвет, что объясняется присутствием гидроксо-ионов железа или молекул Fe(OH) 3 , которые образуются благодаря гидролизу:

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза.

При прокаливании гидроксид железа (III), теряя воду, переходит в оксид железа (III), или окись железа, Fe 2 O 3 . Оксид железа (III) встречается в природе в виде красного железняка и применяется как коричневая краска - железный сурик, или мумия.

Характерной реакцией, отличающей соли железа (III) от солей железа (II), служит действие роданида калия KSCN или роданида аммония NH 4 SCN на соли железа. Раствор роданида калия содержит бесцветные ионы SCN - , которые соединяются с ионами Fe(III), образуя кроваво-красный, слабо диссоциированный роданид железа(III) Fe(SCN) 3 . При взаимодействии же с роданидами ионов железа (II) раствор остается бесцветным.

Цианистые соединения железа. При действии на растворы солей железа (II) растворимых цианидов, например цианида калия, получается белый осадок цианида железа(II):

В избытке цианида калия осадок растворяется вследствие образования комплексной соли K 4 гексацианоферрата (II) калия

Гексацианоферрат(II) калия K 4 ·3H 2 O кристаллизуется в виде больших светло-желтых призм. Эта соль называется также желтой кровяной солью. При растворении в воде соль диссоциирует на ионы калия и чрезвычайно устойчивые комплексные ионы 4- . Практически такой раствор совершенно не содержит ионов Fe 2+ и не дает реакций, характерных для железа(II).

Гексацианоферрат (II) калия служит чувствительным реактивом на ионы железа(III), так как ионы 4- , взаимодействуя с ионами Fe 3+ , образуют нерастворимую в воде соль гексацианоферрат(II) железа (III) Fe 4 3 характерного синего цвета; эта соль получила название берлинской лазури:

Берлинская лазурь применяется в качестве краски.

При действии хлора или брома на раствор желтой кровяной соли анион ее окисляется, превращаясь в 3-

Соответствующая этому аниону соль K 3 называется гексацианоферратом(III) калия, или красной кровяной солью. Она образует красные безводные кристаллы.

Если подействовать гексацианоферратом(III) калия на раствор соли железа(II), то получается осадок гексацианоферрата (III), железа (И) (турнбулева синь), внешне очень похожий на берлинскую лазурь, но имеющий иной состав:

С солями железа (III) K 3 образует зеленовато-бурый раствор.

В большинстве других комплексных соединений, как и в рассмотренных цианоферратах, координационное число железа(II) и железа(III) равно шести.

Ферриты. При сплавлении оксида железа(III) с карбонатами натрия или калия образуются ферриты - соли не полученной в свободном состоянии железистой кислоты HFeO 2 , например феррит натрия NaFeO 2:

При растворении сплава в воде получается красно-фиолетовый раствор, из которого действием хлорида бария можно осадить нерастворимый в воде феррат бария BaFeO 4 .

Все ферраты - очень сильные окислители (более сильные, чем перманганаты). Соответствующая ферратам железная кислота H 2 FeO 4 и ее ангидрид FeO 3 в свободном состоянии не получены.

Карбонилы железа. Железо образует летучие соединения с оксидом углерода, называемые карбонилами железа. Пентакарбонил железа Fe(CO) 5 представляет собой бледно-желтую жидкость, кипящую при 105°C, нерастворимую в воде, но растворимую во многих органических растворителях. Fe(CO) 5 получают пропусканием СО над порошком железа при 150-200°C и давлении 10 МПа. Примеси, содержащиеся в железе, не вступают в реакции с СО, вследствие чего получается весьма чистый продукт. При нагревании в вакууме пентакарбонил железа разлагается на железо и СО; это используется для получения высокочистого порошкового железа - карбонильного железа (см. § 193).

Природа химических связей в молекуле Fe(CO) 5 рассмотрена на стр. 430.

<<< Назад
Вперед >>>

Самое обсуждаемое
М.Е. Салтыков-Щедрин М.Е. Салтыков-Щедрин "История одного города": описание, герои, анализ произведения. Анализ произведения «История одного города», Салтыков Щедрин История одного города от издателя краткое содержание
У каких слов бывают антонимы У каких слов бывают антонимы
Да пребудет с тобой вдохновение: как преодолеть творческий ступор Да пребудет с тобой вдохновение: как преодолеть творческий ступор


top