Априорная вероятность. Смотреть страницы где упоминается термин априорные вероятности

Априорная вероятность. Смотреть страницы где упоминается термин априорные вероятности

Рассуждение, опирающееся исключительно на точные факты и точные выводы, исходящие из этих фактов, называются строгими соображениями. В случаях, когда для принятия решений необходимо использовать неопределенные факты, строгие рассуждения становятся непригодными. Поэтому, одной из сильнейших сторон любой экспертной системы считается ее способность формировать рассуждения в условиях неопределенности так же успешно, как это делают эксперты-люди. Такие рассуждения имеют характер нестрогих. Можно смело говорить о присутствии нечеткой логики .

Неопределенность , а в следствии и нечеткая логика может рассматриваться как недостаточность адекватной информации для принятия решения. Неопределенность становится проблемой, поскольку может препятствовать созданию наилучшего решения и даже стать причиной того, что будет найдено некачественное решение. Следует отметить, что качественное решение, найденное в реальном времени, часто считается более приемлемым, чем лучшее решение, для вычисления которого требуется большое количество времени. Например, задержка в предоставлении лечения с целью проведения дополнительных анализов может привести к тому, что пациент умрет не дождавшись помощи.

Причиной неопределенности является наличие в информации различных ошибок. Упрощенная классификация этих ошибок может быть представлена в их разделении на следующие типы:

  • неоднозначность информации, возникновение которой связано с тем, что некоторая информация может интерпретироваться различными способами;
  • неполнота информации, связанной с отсутствием некоторых данных;
  • неадекватность информации, обусловленная применением данных, не соответствуют реальной ситуации (возможными причинами являются субъективные ошибки: ложь, дезинформация, неисправность оборудования);
  • погрешности измерения, которые возникают из-за несоблюдения требований правильности и точности критериев количественного представления данных;
  • случайные ошибки, проявлением которых являются случайные колебания данных относительно среднего их значения (причиной могут быть: ненадежность оборудовании, броуновское движение, тепловые эффекты и т.д.).

На сегодня разработана значительное количество теорий неопределенности, в которых делается попытка устранения некоторых или даже всех ошибок и обеспечения надежного логического вывода в условиях неопределенности. К наиболее употребляемых на практике относятся теории, основанные на классическом определении вероятности и на апостериорной вероятности.

Одним из старейших и важнейших инструментальных средств решения задач искусственного интеллекта является вероятность. Вероятность - это количественный способ учета неопределенности. Классическая вероятность берет начало из теории, которая была впервые предложена Паскалем и Ферма в 1654 году. С тех пор была проведена большая работа в области изучения вероятности и осуществлении многочисленные применения вероятности в науке, технике, бизнесе, экономике и других областях.

Классическая вероятность

Классическую вероятность называют также априорной вероятностью, поскольку ее определение относится к идеальным систем. Термин «априорная» обозначает вероятность, что определяется «к событиям», без учета многих факторов, имеющих место в реальном мире. Понятие априорной вероятности распространяется на события, происходящие в идеальных системах, склонных к износу или влияния других систем. В идеальной системе появление любого из событий происходит одинаково, благодаря чему их анализ становится намного проще.

Фундаментальная формула классической вероятности (Р) определена следующим образом:

В этой формуле W - количество ожидаемых событий, а N - общее количество событий с равными вероятностями, которые являются возможными результатами эксперимента или испытания. Например, вероятность выпадения любой грани шестигранной игральной кости равна 1/6, а извлечение любой карты из колоды, содержащей 52 различные карты - 1/52.

Аксиомы теории вероятности

Формальная теория вероятности может быть создана на основе трех аксиом:

Приведенные аксиомы позволили заложить фундамент теории вероятности, однако в них не рассматривается вероятность событий, происходящих в реальных - неидеальных системах. В отличие от априорного подхода, в реальных системах, для определения вероятности некоторого события Р(Е) , применяется способ определения экспериментальной вероятности как лимита распределения частот:

Апостериорная вероятность

В этой формуле f(E) обозначает частоту появления некоторого события между N -го количества наблюдений общих результатов. Вероятность такого типа называется также апостериорной вероятностью , т.е. вероятностью, определяемой «после событий». В основу определения апостериорной вероятности положено измерение частоты, с которой возникает некоторое событие при проведении большого количества испытаний. Например, определение социального типа кредитоспособного клиента банка на основе эмпирического опыта.

События, которые не относятся к взаимоисключающих, могут влиять друг на друга. Такие события относятся к классу сложных. Вероятность сложных событий может быть вычислена путем анализа соответствующих им выборочных пространств. Эти выборочные пространства могут быть представлены с помощью диаграмм Венна, как показано на рис. 1

Рис.1 Выборочное пространство для двух не взаимоисключающих событий

Вероятность наступления события А, которая определяется с учетом того, что произошло событие В, называется условной вероятностью и обозначается Р(А|В) . Условная вероятность определяется следующим образом:

Априорная вероятность

В этой формуле вероятность Р(В) не должна равняться нулю, и представляет собой априорную вероятность, что определяется до того, как станет известна другая дополнительная информация. Априорную вероятность , что применяется в связи с использованием условной вероятности, иногда называют абсолютной вероятностью.

Существует задача, которая является по сути противоположной задачи вычисления условной вероятности. Она заключается в определении обратной вероятности, которая показывает вероятность предыдущей события с учетом тех событий, которые произошли в дальнейшем. На практике с вероятностью такого типа приходится встречаться довольно часто, например, при проведении медицинской диагностики или диагностики оборудования, при которой выявляются определенные симптомы, а задача состоит в том, чтобы найти возможную причину.

Для решения этой задачи применяется теорема Байеса , названная в честь британского математика XVIII века Томаса Байеса. Байесивськая теория, в наши дни, широко используется для анализа деревьев решений в экономике и общественных науках. Метод байесовского поиска решений применяется также в экспертной системе PROSPECTOR при определении перспективных площадок для разведки полезных ископаемых. Система PROSPECTOR приобрела широкую популярность как первая экспертная система, с помощью которой был открыт ценное месторождение молибдена, что стоимость 100 миллионов долларов.

Случайное событие оценивают числом, определяющим интенсивность проявления этого события. Это число называют вероятностью события P() . Вероятность элементарного события – . Вероятность события есть численная мера степени объективности, возможности этого события. Чем больше вероятность, тем более возможно событие.

Любое событие, совпадающее со всем пространством исходов S , называетсядостоверным событием , т.е. таким событием, которое в результате эксперимента обязательно должно произойти (например, выпадение любого числа очков от 1 до 6 на игральной кости). Если событие не принадлежит множествуS , то оно считаетсяневозможным (например, выпадение числа очков, большего 6, на игральной кости). Вероятность невозможного события равна 0, вероятность достоверного события равна 1. Все остальные события имеют вероятность от 0 до 1.

События Е иназываютсяпротивоположными , еслиЕ наступает тогда, когда не наступает. Например, событиеЕ – «выпадение четного числа очков», тогда событие– «выпадение нечетного числа очков». Два событияЕ 1 иЕ 2 называютсянесовместными , если не существует никакого исхода, общего для обоих событий.

Для определения вероятностей случайных событий используют непосредственные или косвенные способы. При непосредственном подсчете вероятности различают априорную и апостериорную схемы подсчетов, когда проводят наблюдения (опыты) или априорно подсчитывают число опытовm , в которых событие проявилось, и общее число произведенных опытовn . Косвенные способы основываются на аксиоматической теории. Поскольку события определяются как множества, то над ними можно совершать все теоретико-множественные операции. Теория множеств, функциональный анализ были предложены академиком А.Н. Колмогоровым и составили основу аксиоматической теории вероятности. Приведем аксиомы вероятностей.

Аксиома I . Поле событий F (S ) является алгеброй множеств .

Эта аксиома указывает на аналогию теории множеств и теории вероятности.

Аксиома II . Каждому множеству из F (S ) поставлено в соответствие действительное число P(), называемое вероятностью события :

при условии S 1 S 2 = (для несовместных событийS 1 иS 2 ), или для множества несовместных событий

где N – количество элементарных событий (возможных исходов).

Вероятность случайного события

,

где– вероятности элементарных событий, входящих в подмножество.

Пример 1.1. Определить вероятность выпадения каждого числа при бросании игральной кости, выпадения четного числа, числа4 .

Решение . Вероятность выпадения каждого числа из множества

S = {1, 2, 3, 4, 5, 6}
1/6.

Вероятность выпадения четного числа, т.е.
={2,
4, 6}, исходя из (1.6) будетP(
) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2
.

Вероятность выпадения числа 4 , т.е.
= {4, 5, 6 } ,

P(
) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2.

Задания для самостоятельной работы

1. В корзине 20 белых, 30 черных и 50 красных шаров. Определите вероятность того, что первый вынутый из корзинки шар будет белым; черным; красным.

2. В студенческой группе 12 юношей и 10 девушек. Какова вероятность того, что на семинаре по теории вероятности будут отсутствовать: 1) юноша; 2) девушка; 3) два юноши?

3. В течение года 51 день отличался тем, что в эти дни шел дождь (или снег). Какова вероятность того, что вы рискуете попасть под дождь (или снег): 1) отправляясь на работу; 2) отправляясь в поход на 5 дней?

4. Составьте задачу на тему данного задания и решите ее.

1.1.3. Определение апостериорной вероятности (статистической вероятности или частоты

случайного события)

При априорном определении вероятности предполагалось, что равновероятны. Это далеко не всегда соответствует действительности, чаще бывает, что
при
. Допущение
приводит к ошибке в априорном определенииP() по установленной схеме. Для определения, а в общем случаеP() проводят целенаправленные испытания. В ходе проведения таких испытаний (например, результаты испытаний в примерах 1.2, 1.3) при различном состоянии разнообразных условий, воздействий, причинных факторов, т.е. в различныхслучаях, могут возникнуть различныеисходы (различные проявления сведений исследуемого объекта).Каждый исход испытаний соответствует одному элементу или одному подмножеству множества S .Если определять m как число благоприятных событию А исходов, полученных в результате n испытаний, то апостериорная вероятность (статистическая вероятность или частота случайного события А )

На основании закона больших чисел для A

, n ,

т.е. при увеличении числа испытаний частота случайного события (апостериорная, или статистическая, вероятность) стремится к вероятности этого события.

Пример 1.2. Определенная по схеме случаев вероятность выпадения решки при подбрасывании монеты равна 0,5. Требуется подбросить монету 10, 20, 30 ... раз и определить частоту случайного события решка после каждой серии испытаний.

Решение . К. Пуассон подбрасывал монету 24000 раз, при этом решка выпадала 11998 раз. Тогда по формуле (1.7) вероятность выпадения решки

.

Задания для самостоятельной работы

    На основании большого статистического материала (n ) были получены значения вероятностей появления отдельных букв русского алфавита и пробела () в текстах, которые приведены в табл.1.1.

Таблица 1.1. Вероятность появления букв алфавита в тексте

Возьмите страницу любого текста и определите частоту появления различных букв на этой странице. Увеличьте объем испытаний до двух страниц. Полученные результаты сравните с данными таблицы. Сделайте вывод.

    При стрельбе по мишеням был получен следующий результат (см. табл.1.2).

Таблица 1.2. Результат стрельбы по мишеням

Какова вероятность того, что цель была бы поражена с первого выстрела, если бы по своим размерам она была меньше «десятки», «девятки» и т.д.?

3. Спланируйте и проведите аналогичные испытания для других событий. Представьте их результаты.

I.Условные вероятности. Априорная и апостериорная вероятность. 3

II.Независимые события. 5

III.Проверка статистических гипотез. Статистическая достоверность. 7

IV.Использование критерия «хи-квадрат» 19

1.Определение достоверности отличия набора частот от набора вероятностей. 19

2.Определение достоверности отличия нескольких наборов частот. 26

VСАМОСТОЯТЕЛЬНОЕ ЗАДАНИЕ 33

Занятие №2

  1. Условные вероятности. Априорная и апостериорная вероятность.

Случайная величина задается тремя объектами: множеством элементарных событий, множеством событий и вероятностью событий. Те значения,которые может принимать случайная величина, называютсяэлементарными событиями. Наборы элементарных событий называютсясобытиями . Для числовых и других не очень сложных случайных величин любой конкретно заданный набор элементарных событий есть событие.

Приведем пример: бросание игральной кости.

Всего имеется 6 элементарных событий: «очко», «2 очка», «3 очка»… «6 очков». Событие – любой набор элементарных событий, например «чет» -сумма элементарных событий «2 очка», «4 очка» и «6 очков».

Вероятность любого элементарного события P(A) равна 1/6:

вероятность события – количеству входящих в него элементарных событий, деленному на 6.

Достаточно часто в добавление к известной вероятности события имеется некоторая дополнительная информация, которая меняет эту вероятность. Например, летальность больных. поступивших в больницу с острой кровоточащей язвой желудка, составляет около 10%. Однако, если больному больше 80 лет, эта летальность составляет 30%.

Для описания таких ситуаций были введены так называемые условные вероятности . Они обозначаются, какP(A/B) и читаются «вероятность события А при условии события В». Для вычисления условной вероятности используется формула:

Вернемся к предыдущему примеру:

Пусть среди больных, поступивших в больницу с острой кровоточащей язвой желудка 20% - больные старше 80 лет. Причем, среди всех больных доля умерших больных старше 80 лет – 6%(напомним, что доля всех умерших составляет 10%). В этом случае

При определении условных вероятностей часто пользуются терминами априорной (буквально – до опыта) иапостериорной (буквально – после опыта) вероятности.

Пользуясь условными вероятностями, можно по одним вероятностям вычислить другие, например, менять местами событие и условие.

Рассмотрим эту технику на примере анализа связи риска заболевания ревматизма (ревматической лихорадкой) и одного из антигенов, являющихся для него фактором риска.

Частота заболевания ревматизмом – около 1%. Обозначим наличие ревматизма как R + , тогда какP(R +)=0,01.

Наличие антигена будем обозначать, как А + . Его находят у 95% больных ревматизмом и у 6% лиц, ревматизмом не болеющих. В наших обозначениях это: условные вероятности Р(А + /R +)=0,95 и Р(А + /R -)=0,06.

На основании этих трех вероятностей будем последовательно определять другие вероятности.

Прежде всего, если заболеваемость ревматизмом P(R +)=0,01, то вероятность не заболетьP(R -)=1-P(R +)=0,99.

Из формулы для условной вероятности находим, что

Р(А + иR +)= Р(А + /R +) * Р(R +) = 0,95*0,01 = 0,0095, или 0,95% популяции одновременно и болеют ревматизмом и имеют антиген.

Аналогично

Р(А + иR -)= Р(А + /R -) * Р(R -) = 0,06*0,99 = 0,0594, или 5,94% популяции носят антиген, но ревматизмом не болеют.

Так как все имеющие антиген или болеют ревматизмом или и не болеют (но не одновременно и то и другое), то сумма двух последних вероятностей дает частоту носительства антигена в популяции в целом:

Р(А +)= Р(А + иR +) + Р(А + иR -) = 0,0095 + 0,0594 = 0,0689

Соответственно, доля людей, не имеющих антиген равна

Р(А -)=1- Р(А +) = 0,9311

Так как заболеваемость ревматизмом равна 1%, а доля лиц, имеющих антиген и болеющих ревматизмом, равна 0,95%, то доля лиц, болеющих ревматизмом и не имеющих антигена равна:

Р(А - иR +) = Р(R +) - Р(А + иR +) = 0,01 – 0,0095 = 0,0005

Теперь будем двигаться в обратную сторону, переходя от вероятностей событий и их комбинаций к условным вероятностям. По исходной формуле условной вероятности Р(А + /R +)= Р(R + иA +)/ Р(А +) = 0,0095/0,06890,1379 , или примерно 13,8% лиц, носящих антиген, заболеют ревматизмом. Так как заболеваемость популяции в целом лишь 1%, то факт выявления антигена повышает вероятность заболевания ревматизмом в 14 раз.

Аналогичным образом Р(R + /А -)=Р(R + иA -)/ Р(А -) = 0,0005/0,93110,000054, то есть тот факт, что при проверке антигена не обнаружено, снижает вероятность заболевания ревматизмом в 19 раз.

Оформим эту задачу в электронной таблице Excel:

Наличие ревматизма R+

Наличие антигена у болеющих А+

Наличие антигена у неболеющих А+

Вероятность не заболеть

P(R -)=1- P(R +)

Одновременно и болеют ревматизмом и имеют антиген

Р(А + и R +)= Р(А + /R +) * Р(R +)

Носят антиген, но ревматизмом не болеют

Р(А + и R -)= Р(А + /R -) * Р(R -)

Частота носительства антигена в популяции в целом

Р(А +)= Р(А + и R +) + Р(А + и R -)

Доля людей не имеющих антиген

Р(А -)=1- Р(А +)

Доля людей, болеющих ревматизмом и не имеющих антигена

Р(А - и R +) = Р(R +) - Р(А + и R +)

Лица, носящие антиген, заболеют ревматизмом

Р(А + /R +)= Р(R + и A +)/ Р(А +)

Лица,не носящие антиген, не заболеют ревматизмом

Р(R + /А -)=Р(R + и A -)/ Р(А -)

Можно посмотреть процесс построения таблицы картинки2\p2-1.gif

Вопрос № 38. Полная группа событий. Формула полной вероятности. Формулы Байеса.

Двух событий. Независимость в совокупности. Формулировка теоремы умножения в этом случае.

Вопрос № 37. Условная вероятность. Теорема умножения. Определение независимости

Условная вероятность - вероятность одного события при условии, что другое событие уже произошло.

P(А│В)= р(АВ)/ р(В)

Условная вероятность отражает влияние одного события на вероятность другого.

Теорема умножения.

Вероятность произведения событий определяется формулой Р(А 1 ,А 2 ,….А n)= Р(А 1)Р(А 2/ А 1) …Р(А n / А 1 А 2… А n -1)

Для произведения двух событий отсюда следует, что

Р(АВ)=Р(А/В)Р{B)=Р(В/А)Р{А)

Если одно событие не зависит от другого, если появление одного из них не влияет на вероятность появления другого, то последнее также не зависит от первого. Это дает полное основания называть такие события независимыми. Математически независимость означает, что условная вероятность некоторого события совпадает с его вероятностью (безусловной вероятностью).

1.Говорят что событие А не зависит от события В если

P(А│В)=Р(А)

Если событие А не зависит от события В то и событие В не зависит от события А.

2.Если события А и В независимы то Р(АВ)=Р(А)Р(В)-это равенство используется для определения независимых событий.

Следует различать попарную независимость событий и независимость в совокупности.

События А1,А2,….Аn называются независимыми в совокупности если они попарно независимы и каждое из них не зависит от произведения любого набора из остальных событий.

Если события А1,А2,….Аn независимы в совокупности то

Р(А 1 ,А 2 ,….А n)=Р(А 1)Р(А 2)…Р(А n).

В каждой группе какое-либо событие в результате испытания обязательно произойдет, причем появление одного из них исключает появление всех остальных. Такие события называются полной группой событий.

Определение: Если группа событий такова, что в результате испытания обязательно должно произойти хотя бы одно из них, и любые два из них несовместны, то эта группа событий называется полной группой.

Каждое событие из полной группы называется элементарным событием. Каждое элементарное событие - равновозможное, т.к. нет оснований считать, что какое-либо из них более возможное, чем любое другое событие полной группы.

Два противоположных события составляют полную группу.

Относительной частотой события А называется отношение числа опытов, в результате которых произошло событие А к общему числу опытов.

Отличие относительной частоты от вероятности заключается в том, что вероятность вычисляется без непосредственного произведения опытов, а относительная частота – после опыта.



Формула полной вероятности

(где А – некоторое событие, Н1, Н2 … Hi – попарно несовместимы, образубт полную группу, причем А может произойти вместе с H1, H2 Hi)

P(A)=P(A|H 1) P(H 1)+P(A|H 2)P(H 2)+P(A|H 3)P(H 3)+…+P(A|H n)P(H n)

Формула Байеса

Замечание. События Нi называют гипотезами вероятности, р(Нi) – априорными вероятностями гипотез Нi, а вероятности Р(Нi/А) – апостериорными вероятностями гипотез Нi

Пусть известен результат опыта, а именно то, что произошло событие А. Этот факт может изменить априорные (то есть известные до опыта) вероятности гипотез. Для переоценки вероятностей гипотез при известном результате опыта используется формула Байеса:

Пример. После двух выстрелов двух стрелков, вероятности попаданий которых равны 0,6 и 0,7, в мишени оказалась одна пробоина. Найти вероятность того, что попал первый стрелок.

Решение. Пусть событие А – одно попадание при двух выстрелах,

а гипотезы: Н1 – первый попал, а второй промахнулся,

Н2 – первый промахнулся, а второй попал,

Н3 – оба попали,

Н4 – оба промахнулись.

Вероятности гипотез:

р(Н1) = 0,6·0,3 = 0,18,

р(Н2) = 0,4·0,7 = 0,28,

р(Н3) = 0,6·0,7 = 0,42,

р(Н4) = 0,4·0,3 = 0,12.

Тогда р(А/Н1) = р(А/Н2) = 1,

р(А/Н3) = р(А/Н4) = 0.

Следовательно, полная вероятность р(А) = 0,18·1 + 0,28·1 + 0,42·0 + 0,12·0 = 0,46.

Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез.

Определение 3.1. Пусть событие А может произойти только совместно с одним из событий Н1, Н2,…, Нп, образующих полную группу несовместных событий. Тогда события Н1, Н2,…, Нп называются гипотезами.

Теорема 3.1. Вероятность события А, наступающего совместно с гипотезами Н1, Н2,…, Нп, равна:

где p(Hi) – вероятность i- й гипотезы, а p(A/Hi) – вероятность события А при условии реализации этой гипотезы. Формула (P(A)= ) носит название формулы полной вероятности

Вопрос № 39. Схема Бернулли. Вероятность m успехов в серии из n испытаний


Самое обсуждаемое
Планеты солнечной системы по порядку Планеты солнечной системы по порядку
Задачи на свободное падение тел: примеры решения задач по кинематике Задачи на свободное падение тел: примеры решения задач по кинематике
Сколько всего, гласных, согласных, шипящих букв и звуков в русском алфавите? Сколько всего, гласных, согласных, шипящих букв и звуков в русском алфавите?


top