Третичная функция белков. Молекулярная структура белков

Третичная функция белков. Молекулярная структура белков

Химическая структура белков представлена альфа-аминокислотами, соединенными в цепочку посредством пептидной связи. В живых организмах состав определяет генетический код. В процессе синтеза в большинстве случаев применяется 20 аминокислот стандартного типа. Множеством их комбинаций формируются белковые молекулы с самыми разнообразными свойствами. Аминокислотные остатки часто подвергаются посттрансляционным модификациям. Они могут возникнуть и до того, как белок станет выполнять свои функции, и в процессе его активности в клетке. В живых организмах часто несколько молекул формируют сложные комплексы. В качестве примера можно привести фотосинтетическое объединение.

Назначение соединений

Белки считаются важной составляющей питания человека и животных в связи с тем, что в их организмах все необходимые аминокислоты синтезироваться не могут. Часть их должна поступать вместе с белковой пищей. Основными источниками соединений выступают мясо, орехи, молоко, рыба, зерновые. В меньшей степени протеины присутствуют в овощах, грибах и ягодах. При пищеварении посредством ферментов потребленные белки подвергаются разрушению до аминокислот. Они уже используются в биосинтезе собственных протеинов в организме либо подвергаются распаду дальше - для получения энергии.

Историческая справка

Последовательность структуры белка инсулина была определена впервые Фредериеом Сенгером. За свою работу он получил Нобелевскую премию в 1958 году. Сенгер использовал метод секвенирования. С помощью дифракции рентгеновского излучения впоследствии были получены трехмерные структуры миоглобина и гемоглобина (в конце 1950 гг.). Работы проводили Джон Кендрю и Макс Перуц.

Структура молекулы белка

Она включает в себя линейные полимеры. Они, в свою очередь, состоят из остатков альфа-аминокислот, являющихся мономерами. Кроме того, структура белка может включать компоненты, имеющие неаминокислотную природу, и аминокислотные остатки модифицированного типа. При обозначении компонентов применяются 1- либо 3-буквенные сокращения. Соединение, в состав которого входит от двух до нескольких десятков остатков, именуется часто как "полипептид". В результате взаимодействия альфа-карбоксильной группы одной аминокислоты с альфа-аминогруппой другой появляются (в процессе формирования структуры белка) связи. В соединении выделяют С- и N- концы, в зависимости от того, какая группа аминокислотного остатка является свободной: -СООН либо -NH 2 . В процессе синтеза белка на рибосоме в качестве первого концевого выступает, как правило, остаток метионина; присоединение последующих осуществляется к С-концу предыдущих.

Уровни организации

Они были предложены Линдрем-Лангом. Несмотря на то что данное деление считается несколько устаревшим, им все еще пользуются. Было предложено выделять четыре уровня организации соединений. Первичная структура молекулы белка определяется генетическим кодом и особенностями гена. Для более высоких уровней характерно формирование в ходе сворачивания протеина. Пространственная структура белка определяется в целом аминокислотной цепью. Тем не менее она достаточно лабильна. На нее могут оказывать влияние внешние факторы. В связи с этим более корректно говорить о конформации соединения, наиболее выгодной и предпочтительной энергетически.

1 уровень

Он представлен последовательностью аминокислотных остатков полипептидной цепи. Как правило, его описывают с использованием одно- либо трехбуквенных обозначений. Первичная структура белков отличается устойчивыми сочетаниями аминокислотных остатков. Они выполняют определенные задачи. Такие "консервативные мотивы" остаются сохраненными в ходе видовой эволюции. По ним достаточно часто можно предсказывать задачу неизвестного протеина. Оценивая степень сходства (гомологии) в аминокислотных цепях от различных организмов, можно определять эволюционное расстояние, образующееся между таксонами, которые составляют эти организмы. Первичная структура белков определяется методом секвенирования либо по исходному комплексу его мРНК с использованием таблицы генетического кода.

Локальное упорядочивание участка цепи

Это следующий уровень организации - вторичная структура белков. Существует несколько ее типов. Локальное упорядочивание участка цепи полипептида стабилизируется водородными связями. Наиболее популярными типами считаются:

Пространственное строение

Третичная структура белков включает в себя элементы предыдущего уровня. Они стабилизируются разными типами взаимодействий. Важнейшее значение при этом имеют гидрофобные связи. В стабилизации участвуют:

  • Ковалентные взаимодействия.
  • Ионные связи, формирующиеся между боковыми аминокислотными группами, имеющими противоположные заряды.
  • Водородные взаимодействия.
  • Гидрофобные связи. В процессе взаимодействия с окружающими элементами Н 2 О происходит сворачивание протеина так, чтобы боковые неполярные аминокислотные группы оказывались изолированными от водного раствора. Гидрофильные группы (полярные) оказываются на поверхности молекулы.

Третичная структура белков определяется методами магнитного (ядерного) резонанса, некоторыми видами микроскопии и прочими способами.

Принцип укладки

Исследования показали, что между 2 и 3 уровнями удобно выделить еще один. Его именуют "архитектурой", "мотивом укладки". Он определяется взаиморасположением компонентов вторичной структуры (бета-тяжей и альфа-спиралей) в границах компактной глобулы - белкового домена. Он может существовать самостоятельно либо быть включенным в состав более крупного протеина вместе с прочими аналогичными. Установлено, что мотивы укладки достаточно консервативны. Они встречаются в протеинах, не обладающих ни эволюционными, ни функциональными связями. Определение архитектуры лежит в основе рациональной (физической) классификации.

Доменная организация

При взаимном расположении нескольких цепей полипептидов в составе одного протеинового комплекса формируется четвертичная структура белков. Элементы, входящие в ее состав, образуются по отдельности на рибосомах. Только по завершении синтеза начинает образовываться данная структура белка. Она может содержать как различающиеся, так и идентичные полипептидные цепи. Четвертичная структура белков стабилизируется за счет тех же взаимодействий, что и на предыдущем уровне. Некоторые комплексы могут включать в себя несколько десятков протеинов.

Структура белка: защитные задачи

Полипептиды цитоскелета, выступая в некотором роде в качестве арматуры, придают многим органоидам форму, участвуют в ее изменении. Структурные протеины обеспечивают защиту организма. К примеру, таким белком является коллаген. Он формирует основу в межклеточном веществе соединительных тканей. Также защитной функцией обладает кератин. Он составляет основу рогов, перьев, волос и прочих производных эпидермиса. При связывании белками токсинов во многих случаях происходит детоксикация последних. Так выполняется задача по химической защите организма. Особенно важную роль в процессе обезвреживания токсинов в человеческом организме играют печеночные ферменты. Они способны расщеплять яды или переводить их в растворимую форму. Это способствует более быстрой транспортировке их из организма. Белки, присутствующие в крови и прочих биологических жидкостях, обеспечивают иммунную защиту, вызывая реакцию как на атаку патогенов, так и на повреждение. Иммуноглобулины (антитела и компоненты системы комплемента) способны нейтрализовывать бактерии, чужеродные протеины и вирусы.

Механизм регуляции

Белковые молекулы, не выступающие ни в качестве источника энергии, ни как строительный материал, контролируют многие внутриклеточные процессы. Так, за счет них осуществляется регулирование трансляции, транскрипции, слайсинга, деятельность прочих полипептидов. Механизм регуляции основывается на ферментативной активности или проявляется благодаря специфичному связыванию с прочими молекулами. К примеру, факторы транскрипции, полипептиды-активаторы и протеины- репрессоры способны контролировать интенсивность генной транскрипции. При этом они взаимодействуют с регуляторными последовательностями генов. Важнейшая роль в контроле над течением внутриклеточных процессов отводится протеинфосфатазам и протеинкиназам. Эти ферменты запускают либо подавляют активность прочих белков посредством присоединения или отщепления от них фосфатных групп.

Сигнальная задача

Ее часто объединяют с регуляторной функцией. Это связано с тем, что многие внутриклеточные, как и внеклеточные, полипептиды могут передавать сигналы. Такой способностью обладают факторы роста, цитокины, гормоны и прочие соединения. Стероиды транспортируются по крови. Взаимодействие гормона с рецептором выступает в качестве сигнала, за счет которого запускается ответная реакция клетки. Стероиды контролируют содержание соединений в крови и клетках, размножение, рост и прочие процессы. В качестве примера можно привести инсулин. Он регулирует уровень глюкозы. Взаимодействие клеток осуществляется посредством сигнальных белковых соединений, передаваемых по межклеточному веществу.

Транспорт элементов

Растворимые протеины, участвующие в перемещении малых молекул, имеют высокое сродство к субстрату, присутствующему в повышенной концентрации. Они обладают также способностью к легкому его высвобождению в областях с низким его содержанием. В качестве примера можно привести транспортный белок гемоглобин. Он перемещает из легких кислород к прочим тканям, а от них - переносит углекислый газ. В транспортировке малых молекул через стенки клетки, изменяя их, участвуют и некоторые мембранные белки. Липидный слой цитоплазмы обладает водонепроницаемостью. Благодаря этому предотвращается диффузия заряженных или полярных молекул. Мембранные транспортные соединения принято разделять на переносчиков и каналы.

Резервные соединения

Эти белки формируют так называемые запасы. Они накапливаются, например, в семенах растений, животных яйцеклетках. Такие белки выступают в качестве резервного источника вещества и энергии. Некоторые соединения используются организмом как аминокислотный резервуар. Они, в свою очередь, являются предшественниками активных веществ, участвующих в регулировании метаболизма.

Клеточные рецепторы

Такие белки могут располагаться как непосредственно в цитоплазме, так и встраиваться в стенку. Одной своей частью соединение принимает сигнал. В качестве него, как правило, выступает химическое вещество, а в ряде случаев - механическое воздействие (растяжение, к примеру), свет и прочие стимулы. В процессе воздействия сигнала на определенный фрагмент молекулы - полипептид-рецептор - начинаются ее конформационные изменения. Они провоцируют смену конформации остальной части, выполняющей передачу стимула на прочие компоненты клетки. Отправка сигнала может осуществляться разными способами. Одни рецепторы способны катализировать химическую реакцию, вторые - выступают в качестве ионных каналов, закрывающихся либо открывающихся под воздействием стимула. Некоторые соединения специфически связывают молекулы-посредники внутри клетки.

Моторные полипептиды

Существует целый класс белков, обеспечивающих движения организма. Моторные белки участвуют в сокращении мышц, перемещении клеток, активности жгутиков и ресничек. За счет них также выполняется направленные и активный транспорт. Кинезины и динеины осуществляют перенос молекул по ходу микротрубочек с использованием в качестве энергетического источника гидролиза АТФ. Вторые перемещают органоиды и прочие элементы по направлению к центросоме из периферических клеточных участков. Кинезины движутся в обратном направлении. Динеины, кроме того, отвечают за активность жгутиков и ресничек.

Как показало изучение свойств белков в растворах, макромолекулы белков имеют форму компактных шаров (глобул) или вытянутых структур – фибрилл. Исследования показали, что в укладке пептидной цепи нет ничего случайного или хаотичного. Она свертывается упорядоченно, для каждого белка определенным образом. Полярные боковые группы аминокислот стремятся расположиться на поверхности глобулы, где могут взаимодействовать с водой, а неполярные группы располагаются внутри.

Для того, чтобы разобраться в замысловатой укладке (архитектонике) белковой макромолекулы, следует рассмотреть в ней несколько уровней организации .

Первичной структурой белка называется полная последовательность аминокислотных остатков в полипептидной цепи.

Она определяется генотипом, т.е. генами организма. В первичной структуре все связи между аминокислотными остатками являются ковалентными и, следовательно, прочными. Разные белки отличаются друг от друга по первичной структуре: кератин имеет одну последовательность аминокислот, пепсин – другую, соматотропин (гормон роста) – третью и т.д. В первичной структуре белка можно различить N-конец цепочки, содержащий свободную NH 2 -группу, и С-конец, содержащий свободную СООН-группу.

Первым белком, у которого была выявлена аминокислотная последовательность, стал гормон инсулин. Исследования проводились в Кембриджском университете Ф.Сэнгером в 1944–1954 гг. Было выявлено, что молекула инсулина состоит из двух полипептидных цепей (из 21 и 30 аминокислотных остатков), удерживаемых друг около друга дисульфидными мостиками.

Однако молекула белка в виде цепи аминокислот, последовательно соединенных пептидными связями, еще не способна выполнять специфические функции. Для этого необходим более высокий уровень структурной организации, выражающийся в усложнении пространственного расположения мономеров.

Вторичная структура белка представлена спиралью, в которую закручивается полипептидная цепь. Группы N–H и С=О, входящие в пептидную связь, заметно поляризованы: азот обладает большей электроотрицательностью, чем водород, а кислород – большей, чем углерод.

Кислород группы С=О может образовывать водородные связи с водородом группы N–H (разумеется, расположенной в другой пептидной связи).

Одной из разновидностей вторичной структуры является -спираль , где каждый атом кислорода связан с атомом водорода четвертой по ходу спирали NH-группы.

Любопытно, что эта сложная красивая структура сперва была предсказана известным биохимиком Л.Полингом теоретически и лишь потом обнаружена экспериментально.

Альтернативная вторичная структура -слой (или складчатый слой) имеет водородную связь между звеньями соседних полипептидных цепей.



Третичная структура белка представляет собой сложную трехмерную пространственную упаковку
-спиралей и -слоев. Эта трехмерная структура устанавливается за счет взаимодействия радикалов аминокислот, между которыми могут возникнуть связи несколько типов:

1) ионные , возникающие за счет электростатического взаимодействия между отрицательно и положительно заряженными боковыми группами;

2) гидрофобные («не любящие воду»), устанавливающиеся за счет стремления неполярных радикалов объединяться друг с другом, а не смешиваться с окружающей их водной средой;

3) дисульфидные , которые образуются между атомами серы SH-групп двух остатков аминокислоты цистеина. Эти S–S связи по своей природе являются ковалентными;

4) водородные , которые также возникают за счет взаимодействия между атомами радикалов.

Третичная структура белка не является конечной. Для некоторых белков, чаще всего регуляторных, характерна четвертичная структура, необходимая им для эффективного выполнения функции.

Четвертичная структура представлена ассоциантом, состоящим из нескольких полипептидных цепей. Например, сложная молекула гемоглобина состоит из двух -субъединиц (141 аминокислотный остаток) и двух -субъединиц (146 аминокислотных остатков). Каждая субъединица связана с молекулой железосодержащего гема. В результате их объединения образуется функционирующая молекула гемоглобина. Только в такой упаковке гемоглобин работает полноценно, то есть способен переносить кислород. Четвертичная структура стабилизируется теми же связями, что и третичная.

Пространственная конфигурация белка т.е. третичная и четвертичная структуры называется конформацией . Конформация белка определяется его первичной структурой: белковая цепочка с определенной последовательностью аминокислот самопроизвольно укладывается с образованием природной пространственной конфигурации. Это получило название «самосборка белковой молекулы». Если полипептидную цепь взять за концы, растянуть ее и затем отпустить, то она всякий раз будет свертываться в одну и ту же структуру, характерную для этого вида полипептида.

В то же время из сказанного, очевидно, следует, что, изменив всего лишь одну аминокислоту в каком-либо полипептиде, мы получим молекулу с совершенно иной структурой, а значит и с иными свойствами.

Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты

Если в образовании пептидной связи участвует иминогруппа пролина или гидроксипролина, то она имеет другой вид

При образовании пептидных связей в клетках сначала активируется карбоксильная группа одной аминокислоты, а затем она соединяется с аминогруппой другой. Примерно так же проводят лабораторный синтез полипептидов.

Пептидная связь является повторяющимся фрагментом полипептидной цепи. Она имеет ряд особенностей, которые влияют не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи:

· копланарность - все атомы, входящие в пептидную группу, находятся в одной плоскости;

· способность существовать в двух резонансных формах (кето- или енольной форме);

· транс-положение заместителей по отношению к С-N-связи;

· способность к образованию водородных связей, причем каждая из пептидных групп может образовывать две водородные связи с другими группами, в том числе и пептидными.

Исключение составляют пептидные группы с участием аминогруппы пролина или гидроксипролина. Они способны образовывать только одну водородную связь (см. выше). Это сказывается на формировании вторичной структуры белка. Полипептидная цепь на участке, где находится пролин или гидроксипролин, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

схема образования трипептида:

Уровни пространственной организации белков: вторичная структура белков: понятие об α-спирали и β-складчатом слое. Третичная структура белков: понятие о нативном белке и денатурации белка. Четвертичная структура белков на примере строения гемоглобина.

Вторичная структура белка. Под вторичной структурой белка понимают способ укладки полипептидной цепи в упорядоченную структуру. По конфигурации выделяют следующие элементы вторичной структуры: α -спираль и β -складчатый слой.

Модель строения α-спирали, учитывающая все свойства пептидной связи, была разработана Л. Полингом и Р. Кори (1949 - 1951 гг.).

На рисунке 3, а изображена схема α -спирали, дающая представление об основных ее параметрах. Полипептидная цепь сворачивается вα -спираль таким образом, что витки спирали регулярны, поэтому спиральная конфигурация имеет винтовую симметрию (рис. 3, б ). На каждый виток α -спирали приходится 3,6 аминокислотных остатка. Расстояние между витками или шаг спирали составляет 0,54 нм, угол подъема витка равен 26°. Формирование и поддержание α -спиральной конфигурации происходит за счет водородных связей, образующихся между пептидными группами каждого n -го и (п + 3)-го аминокислотных остатков. Хотя энергия водородных связей мала, большое количество их приводит к значительному энергетическому эффекту, в результате чего α -спиральная конфигурация довольно устойчива. Боковые радикалы аминокислотных остатков не участвуют в поддержании α -спиральной конфигурации, поэтому все аминокислотные остатки в α -спирали равнозначны.

В природных белках существуют только правозакрученные α -спирали.

β-Складчатый слой - второй элемент вторичной структуры. В отличие от α -спирали β -складчатый слой имеет линейную, а не стержневую форму (рис. 4). Линейная структура удерживается благодаря возникновению водородных связей между пептидными группировками, стоящими на разных участках полипептидной цепи. Эти участки оказываются сближенными на расстояние водородной связи между - С = О и HN - группами (0,272 нм).


Рис. 4. Схематичное изображение β -складчатого слоя (стрелками указан

о направление полипептидной цепи)

Рис. 3. Схема (а ) и модель (б ) α -спирали

Вторичная структура белка определяется первичной. Аминокислотные остатки в разной степени способны к образованию водородных связей, это и влияет на образование α -спирали или β -слоя. К спиралеобразующим аминокислотам относятся аланин, глутаминовая кислота, глутамин, лейцин, лизин, метионин и гистидин. Если фрагмент белка состоит главным образом из перечисленных выше аминокислотных остатков, то на данном участке сформируется α -спираль. Валин, изолейцин, треонин, тирозин и фенилаланин способствуют образованию β -слоев полипептидной цепи. Неупорядоченные структуры возникают на участках полипептидной цепи, где сконцентрированы такие аминокислотные остатки, как глицин, серии, аспарагиновая кислота, аспарагин, пролин.

Во многих белках одновременно имеются и α -спирали, и β -слои. Доля спиральной конфигурации у разных белков различна. Так, мышечный белок парамиозин практически на 100% спирализован; высока доля спиральной конфигурации у миоглобина и гемоглобина (75%). Напротив, у трипсина и рибонуклеазы значительная часть полипептидной цепи укладывается в слоистые β -структуры. Белки опорных тканей - кератин (белок волос), коллаген (белок кожи и сухожилий) - имеют β -конфигурацию полипептидных цепей.

Третичная структура белка. Третичная структура белка - это способ укладки полипептидной цепи в пространстве. Чтобы белок приобрел присущие ему функциональные свойства, полипептидная цепь должна определенным образом свернуться в пространстве, сформировав функционально активную структуру. Такая структура называется нативной. Несмотря на громадное число теоретически возможных для отдельной полипептидной цепи пространственных структур, сворачивание белка приводит к образованию единственной нативной конфигурации.

Стабилизируют третичную структуру белка взаимодействия, возникающие между боковыми радикалами аминокислотных остатков разных участков полипептидной цепи. Эти взаимодействия можно разделить на сильные и слабые.

К сильным взаимодействиям относятся ковалентные связи между атомами серы остатков цистеина, стоящих в разных участках полипептидной цепи. Иначе такие связи называются дисульфидными мостами; образование дисульфидного моста можно изобразить следующим образом:

Кроме ковалентных связей третичная структура белковой молекулы поддерживается слабыми взаимодействиями, которые, в свою очередь, разделяются на полярные и неполярные.

К полярным взаимодействиям относятся ионные и водородные связи. Ионные взаимодействия образуются при контакте положительно заряженных групп боковых радикалов лизина, аргинина, гистидина и отрицательно заряженной СООН-группы аспарагиновой и глутаминовой кислот. Водородные связи возникают между функциональными группами боковых радикалов аминокислотных остатков.

Неполярные или ван-дер-ваальсовы взаимодействия между углеводородными радикалами аминокислотных остатков способствуют формированию гидрофобного ядра (жирной капли) внутри белковой глобулы, т.к. углеводородные радикалы стремятся избежать соприкосновения с водой. Чем больше в составе белка неполярных аминокислот, тем большую роль в формировании его третичной структуры играют ван-дер-ваальсовы связи.

Многочисленные связи между боковыми радикалами аминокислотных остатков определяют пространственную конфигурацию белковой молекулы (рис. 5).


Рис. 5. Типы связей, поддерживающих третичную структуру белка:
а - дисульфидный мостик; б - ионная связь; в, г - водородные связи;
д - ван-дер-ваальсовы связи

Третичная структура отдельно взятого белка уникальна, как уникальна и его первичная структура. Только правильная пространственная укладка белка делает его активным. Различные нарушения третичной структуры приводят к изменению свойств белка и потере биологической активности.

Четвертичная стурктура белка. Белки с молекулярной массой более 100 кДа 1 состоят, как правило, из нескольких полипептидных цепей со сравнительно небольшой молекулярной массой. Структура, состоящая из определенного числа полипептидных цепей, занимающих строго фиксированное положение относительно друг друга, вследствие чего белок обладает той или иной активностью, называется четвертичной структурой белка. Белок, обладающий четвертичной структурой, называется эпимолекулой илимультимером , а составляющие его полипептидные цепи - соответственно субъединицами или протомерами . Характерным свойством белков с четвертичной структурой является то, что отдельная субъединица не обладает биологической активностью.

Стабилизация четвертичной структуры белка происходит за счет полярных взаимодействий между боковыми радикалами аминокислотных остатков, локализованных на поверхности субъединиц. Такие взаимодействия прочно удерживают субъединицы в виде организованного комплекса. Участки субъединиц, на которых происходят взаимодействия, называются контактными площадками.

Классическим примером белка, имеющего четвертичную структуру, является гемоглобин. Молекула гемоглобина с молекулярной массой 68 000 Да состоит из четырех субъединиц двух разных типов - α и β / α -Субъединица состоит из 141 аминокислотного остатка, a β - из 146. Третичная стурктура α - и β -субъединиц сходна, как и их молекулярная масса (17 000 Да). Каждая субъединица содержит простетическую группу - гем . Поскольку гем присутствует и в других белках (цитохромы, миоглобин), которые будут изучаться далее, хотя бы коротко обсудим структуру тема (рис. 6). Группировка гема представляет собой сложную копланарную циклическую систему, состоящую из центрального атома, который образует координационные связи с четырьмя остатками пиррола, соединенными метановыми мостиками (= СН -). В гемоглобине железо обычно находится в состоянии окисления (2+).

Четыре субъединицы - две α и две β - соединяются в единую структуру таким образом, что α -субъединицы контактируют только с β -субъединицами и наоборот (рис. 7).


Рис. 6. Структура гема гемоглобина


Рис. 7. Схематичное изображение четвертичной структуры гемоглобина:
Fe - гем гемоглобина

Как видно из рисунка 7, одна молекула гемоглобина способна переносить 4 молекулы кислорода. И связывание, и освобождение кислорода сопровождается конформационными изменениями структуры α - и β -субъединиц гемоглобина и их взаимного расположения в эпимолекуле. Этот факт свидетельствует о том, что четвертичная структура белка не является абсолютно жесткой.


Похожая информация.


Выделяют четыре уровня структурной организации белков: первичный, вторичный, третичный и четвертичный. Каждый уровень имеет свои особенности.

Первичной структурой белков называется линейная полипептидная цепь из аминокислот, соединенных между собой пептидными связями. Первичная структура - простейший уровень структурной организации белковой молекулы. Высокую стабильность ей придают ковалентные пептидные связи между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой аминокислоты [показать] .

Если в образовании пептидной связи участвует иминогруппа пролина или гидроксипролина, то она имеет другой вид [показать] .

При образовании пептидных связей в клетках сначала активируется карбоксильная группа одной аминокислоты, а затем она соединяется с аминогруппой другой. Примерно так же проводят лабораторный синтез полипептидов.

Пептидная связь является повторяющимся фрагментом полипептидной цепи. Она имеет ряд особенностей, которые влияют не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи:

  • копланарность - все атомы, входящие в пептидную группу, находятся в одной плоскости;
  • способность существовать в двух резонансных формах (кето- или енольной форме);
  • транс-положение заместителей по отношению к С-N-связи;
  • способность к образованию водородных связей, причем каждая из пептидных групп может образовывать две водородные связи с другими группами, в том числе и пептидными.

Исключение составляют пептидные группы с участием аминогруппы пролина или гидроксипролина. Они способны образовывать только одну водородную связь (см. выше). Это сказывается на формировании вторичной структуры белка. Полипептидная цепь на участке, где находится пролин или гидроксипролин, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

Номенклатура пептидов и полипептидов . Название пептидов складывается из названий входящих в них аминокислот. Две аминокислоты дают дипептид, три - трипептид, четыре - тетрапептид и т. д. Каждый пептид или полипептидная цепь любой длины имеет N-концевую аминокислоту, содержащую свободную аминогруппу, и С-концевую аминокислоту, содержащую свободную карбоксильную группу. Называя полипептиды, перечисляют последовательно все аминокислоты, начиная с N-концевой, заменяя в их названиях, кроме С-концевой, суффикс -ин на -ил (так как аминокислоты в пептидах имеют уже не карбоксильную группу, а карбонильную). Например, название изображенного на рис. 1 трипептида - лейцил фенилаланил треонин .

Особенности первичной структуры белка . В остове полипептидной цепи чередуются жесткие структуры (плоские пептидные группы) с относительно подвижными участками (-СНR), которые способны вращаться вокруг связей. Такие особенности строения полипептидной цепи влияют на укладку ее в пространстве.

Вторичная структура представляет собой способ укладки полипептидной цепи в упорядоченную структуру благодаря образованию водородных связей между пептидными группами одной цепи или смежными полипептидными цепями. По конфигурации вторичные структуры делятся на спиральные (α-спираль) и слоисто-складчатые (β-структура и кросс-β-форма).

α-Спираль . Это разновидность вторичной структуры белка, имеющая вид регулярной спирали, образующейся благодаря межпептидным водородным связям в пределах одной полипептидной цепи. Модель строения α-спирали (рис. 2), учитывающая все свойства пептидной связи, была предложена Полингом и Кори. Основные особенности α-спирали:

  • спиральная конфигурация полипептидной цепи, имеющая винтовую симметрию;
  • образование водородных связей между пептидными группами каждого первого и четвертого аминокислотных остатков;
  • регулярность витков спирали;
  • равнозначность всех аминокислотных остатков в α-спирали независимо от строения их боковых радикалов;
  • боковые радикалы аминокислот не участвуют в образовании α-спирали.

Внешне α-спираль похожа на слегка растянутую спираль электрической плитки. Регулярность водородных связей между первой и четвертой пептидными группами определяет и регулярность витков полипептидной цепи. Высота одного витка, или шаг α-спирали, равна 0,54 нм; в него входит 3,6 аминокислотных остатка, т. е. каждый аминокислотный остаток перемещается вдоль оси (высота одного аминокислотного остатка) на 0,15 нм (0,54:3,6 = 0,15 нм), что и позволяет говорить о равнозначности всех аминокислотных остатков в α-спирали. Период регулярности α-спирали равен 5 виткам или 18 аминокислотным остаткам; длина одного периода составляет 2,7 нм. Рис. 3. Модель а-спирали Полинга-Кори

β-Структура . Это разновидность вторичной структуры, которая имеет слабо изогнутую конфигурацию полипептидной цепи и формируется с помощью межпептидных водородных связей в пределах отдельных участков одной полипептидной цепи или смежных полипептидных цепей. Ее называют также слоисто-складчатой структурой. Имеются разновидности β-структур. Ограниченные слоистые участки, образуемые одной полипептидной цепью белка, называют кросс-β-формой (короткая β-структура). Водородные связи в кросс-β-форме образуются между пептидными группами петель полипептидной цепи. Другой тип - полная β-структура - характерен для всей полипептидной цепочки, которая имеет вытянутую форму и удерживается межпептидными водородными связями между смежными параллельными полипептидными цепями (рис. 3). Эта структура напоминает меха аккордеона. Причем возможны варианты β-структур: они могут быть образованы параллельными цепями (N-концы полипептидных цепей направлены в одну и ту же сторону) и антипараллельными (N-концы направлены в разные стороны). Боковые радикалы одного слоя помещаются между боковыми радикалами другого слоя.

В белках возможны переходы от α-структур к β-структурам и обратно вследствие перестройки водородных связей. Вместо регулярных межпептидных водородных связей вдоль цепи (благодаря им полипептидная цепь скручивается в спираль) происходит раскручивание спирализованных участков и замыкание водородных связей между вытянутыми фрагментами полипептидных цепей. Такой переход обнаружен в кератине - белке волос. При мытье волос щелочными моющими средствами легко разрушается спиральная структура β-кератина и он переходит в α-кератин (вьющиеся волосы распрямляются).

Разрушение регулярных вторичных структур белков (α-спирали и β-структур) по аналогии с плавлением кристалла называют "плавлением" полипептидов. При этом водородные связи рвутся, и полипептидные цепи принимают форму беспорядочного клубка. Следовательно, стабильность вторичных структур определяется межпептидными водородными связями. Остальные типы связей почти не принимают в этом участия, за исключением дисульфидных связей вдоль полипептидной цепи в местах расположения остатков цистеина. Короткие пептиды благодаря дисульфидным связям замыкаются в циклы. Во многих белках одновременно имеются α-спиральные участки и β-структуры. Природных белков, состоящих на 100% из α-спирали, почти не бывает (исключение составляет парамиозин - мышечный белок, на 96-100% представляющий собой α-спираль), тогда как у синтетических полипептидов 100%-ная спирализация.

Другие белки имеют неодинаковую степень спирализации. Высокая частота α-спиральных структур наблюдается у парамиозина, миоглобина, гемоглобина. Напротив, у трипсина, рибонуклеазы значительная часть полипептидной цепи укладывается в слоистые β-структуры. Белки опорных тканей: кератин (белок волос, шерсти), коллаген (белок сухожилий, кожи), фиброин (белок натурального шелка) имеют β-конфигурацию полипептидных цепей. Разная степень спирализации полипептидных цепей белков говорит о том, что, очевидно, имеются силы, частично нарушающие спирализацию или "ломающие" регулярную укладку полипептидной цепи. Причиной этого является более компактная укладка полипептидной цепи белка в определенном объеме, т. е. в третичную структуру.

Третичная структура белка

Третичной структурой белка называется способ укладки полипептидной цепи в пространстве. По форме третичной структуры белки делятся в основном на глобулярные и фибриллярные. Глобулярные белки чаще всего имеют эллипсовидную форму, а фибриллярные (нитевидные) белки - вытянутую (форма палочки, веретена).

Однако конфигурация третичной структуры белков еще не дает основания думать, что фибриллярные белки имеют только β-структуру, а глобулярные α-спиральные. Есть фибриллярные белки, имеющие спиральную, а не слоисто-складчатую вторичную структуру. Например, α-кератин и парамиозин (белок запирательной мышцы моллюсков), тропомиозины (белки скелетных мышц) относятся к фибриллярным белкам (имеют палочковидную форму), а вторичная структура у них - α-спираль; напротив, в глобулярных белках может быть большое количество β-структур.

Спирализация линейной полипептидной цепи уменьшает ее размеры примерно в 4 раза; а укладка в третичную структуру делает ее в десятки раз более компактной, чем исходная цепь.

Связи, стабилизирующие третичную структуру белка . В стабилизации третичной структуры играют роль связи между боковыми радикалами аминокислот. Эти связи можно разделить на:

  • сильные (ковалентные) [показать] .

    К ковалентным связям относятся дисульфидные связи (-S-S-) между боковыми радикалами цистеинов, находящихся в разных участках полипептидной цепи; изопептидные, или псевдопептидные, - между аминогруппами боковых радикалов лизина, аргинина, а не α-аминогруппами, и СООН-группами боковых радикалов аспарагиновой, глутаминовой и аминолимонной кислот, а не α-карбоксильными группами аминокислот. Отсюда и название этого типа связи - подобная пептидной. Редко встречается эфирная связь, образуемая СООН-группой дикарбоновых аминокислот (аспарагиновой, глутаминовой) и ОН-группой гидроксиаминокислот (серина, треонина).

  • слабые (полярные и ван-дер-ваальсовы) [показать] .

    К полярным связям относятся водородные и ионные. Водородные связи, как обычно, возникают между группой -NН 2 , - ОН или -SН бокового радикала одной аминокислоты и карбоксильной группой другой. Ионные, или электростатические, связи образуются при контакте заряженных групп боковых радикалов -NН + 3 (лизина, аргинина, гистидина) и -СОО - (аспарагиновой и глутаминовой кислот).

    Неполярные, или ван-дер-ваальсовы, связи образуются между углеводородными радикалами аминокислот. Гидрофобные радикалы аминокислот аланина, валина, изолейцина, метионина, фенилаланина в водной среде взаимодействуют друг с другом. Слабые ван-дер-ваальсовы связи способствуют формированию гидрофобного ядра из неполярных радикалов внутри белковой глобулы. Чем больше неполярных аминокислот, тем большую роль в укладке полипептидной цепи играют ван-дер-ваальсовы связи.

Многочисленные связи между боковыми радикалами аминокислот определяют пространственную конфигурацию белковой молекулы.

Особенности организации третичной структуры белка . Конформация третичной структуры полипептидной цепи определяется свойствами боковых радикалов входящих в нее аминокислот (которые не оказывают заметного влияния на формирование первичной и вторичной структур) и микроокружением, т. е. средой. При укладке полипептидная цепь белка стремится принять энергетически выгодную форму, характеризующуюся минимумом свободной энергии. Поэтому неполярные R-группы, "избегая" воды, образуют как бы внутреннюю часть третичной структуры белка, где расположена основная часть гидрофобных остатков полипептидной цепи. В центре белковой глобулы почти нет молекул воды. Полярные (гидрофильные) R-группы аминокислоты располагаются снаружи этого гидрофобного ядра и окружены молекулами воды. Полипептидная цепь причудливо изгибается в трехмерном пространстве. При ее изгибах нарушается вторичная спиральная конформация. "Ломается" цепь в слабых точках, где находятся пролин или гидроксипролин, поскольку эти аминокислоты более подвижны в цепи, образуя только одну водородную связь с другими пептидными группами. Другим местом изгиба является глицин, R-группа которого мала (водород). Поэтому R-группы других аминокислот при укладке стремятся занять свободное пространство в месте нахождения глицина. Ряд аминокислот - аланин, лейцин, глутамат, гистидин - способствуют сохранению устойчивых спиральных структур в белке, а такие, как метионин, валин, изолейцин, аспарагиновая кислота, благоприятствуют образованию β-структур. В молекуле белка с третичной конфигурацией встречаются участки в виде α-спиралей (спирализованные), β-структур (слоистые) и беспорядочного клубка. Только правильная пространственная укладка белка делает его активным; нарушение ее приводит к изменению свойств белка и потере биологической активности.

Четвертичная структура белка

Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру. К ним относятся миоглобин - белок мышечной ткани, участвующий в связывании кислорода, ряд ферментов (лизоцим, пепсин, трипсин и т. д.). Однако некоторые белки построены из нескольких полипептидных цепей, каждая из которых имеет третичную структуру. Для таких белков введено понятие четвертичной структуры, которая представляет собой организацию нескольких полипептидных цепей с третичной структурой в единую функциональную молекулу белка. Такой белок с четвертичной структурой называется олигомером, а его полипептидные цепи с третичной структурой - протомерами или субъединицами (рис. 4).

При четвертичном уровне организации белки сохраняют основную конфигурацию третичной структуры (глобулярную или фибриллярную). Например, гемоглобин - белок, имеющий четвертичную структуру, состоит из четырех субъединиц. Каждая из субъединиц - глобулярный белок и в целом гемоглобин тоже имеет глобулярную конфигурацию. Белки волос и шерсти - кератины, относящиеся по третичной структуре к фибриллярным белкам, имеют фибриллярную конформацию и четвертичную структуру.

Стабилизация четвертичной структуры белков . Все белки, у которых обнаружена четвертичная структура, выделены в виде индивидуальных макромолекул, не распадающихся на субъединицы. Контакты между поверхностями субъединиц возможны только за счет полярных групп аминокислотных остатков, поскольку при формировании третичной структуры каждой из полипептидных цепей боковые радикалы неполярных аминокислот (составляющих большую часть всех протеиногенных аминокислот) спрятаны внутри субъединицы. Между их полярными группами образуются многочисленные ионные (солевые), водородные, а в некоторых случаях и дисульфидные связи, которые прочно удерживают субъединицы в виде организованного комплекса. Применение веществ, разрывающих водородные связи, или веществ, восстанавливающих дисульфидные мостики, вызывает дезагрегацию протомеров и разрушение четвертичной структуры белка. В табл. 1 суммированы данные о связях, стабилизирующих разные уровни организации белковой молекулы [показать] .

Таблица 1. Характеристика связей, участвующих в структурной организации белков
Уровень организации Типы связей (по прочности) Разновидность связи
Первичная (линейная полипeптидная цепь) Ковалентные (сильные) Пептидная - между α-амино- и α-карбоксильными группами аминокислот
Вторичная (α-спираль, β-структуры) Слабые Водородные - между пептидными группами (каждой первой и четвертой) одной полипептидной цепи или между пептидными группами смежных полипептидных цепей
Ковалентные (сильные) Дисульфидные - дисульфидные петли в пределах линейного участка полипептидной цепи
Третичная (глобулярная, фибриллярная) Ковалентные (сильные) Дисульфидные, изопептидные, сложноэфирные - между боковыми радикалами аминокислот разных участков полипептидной цепи
Слабые Водородные - между боковыми радикалами аминокислот разных участков полипептидной цепи

Ионные (солевые) - между противоположно заряженными группами боковых радикалов аминокислот полипептидной цепи

Ван-дер-ваальсовы - между неполярными боковыми радикалами аминокислот полипептидной цепи

Четвертичная (глобулярная, фибриллярная) Слабые Ионные - между противоположно заряженными группами боковых радикалов аминокислот каждой из субъединиц

Водородные - между боковыми радикалами аминокислотных остатков, расположенными на поверхности контактирующих участков субъединиц

Ковалентные (сильные) Дисульфидные - между остатками цистеина каждой из контактирующих поверхностей разных субъединиц

Особенности структурной организации некоторых фибриллярных белков

Структурная организация фибриллярных белков имеет ряд особенностей по сравнению с глобулярными белками. Эти особенности можно проследить на примере кератина, фиброина и коллагена. Кератины существуют в α- и β-конформациях. α-Кератины и фиброин имеют слоисто-складчатую вторичную структуру, однако в кератине цепи параллельны, а в фиброине антипараллельны (см. рис. 3); кроме того, в кератине имеются межцепочечные дисульфидные связи, а у фиброина они отсутствуют. Разрыв дисульфидных связей приводит к разъединению полипептидных цепей в кератинах. Напротив, образование максимального числа дисульфидных связей в кератинах путем воздействия окислителей создает прочную пространственную структуру. Вообще у фибриллярных белков в отличие от глобулярных порой трудно строго разграничить разные уровни организации. Если принять (как для глобулярного белка), что третичная структура должна образовываться путем укладки в пространстве одной полипептидной цепи, а четвертичная - нескольких цепей, то в фибриллярных белках уже при формировании вторичной структуры участвует несколько полипептидных цепей. Типичным примером фибриллярного белка является коллаген, который относится к самым распространенным белкам организма человека (около 1/3 от массы всех белков). Он содержится в тканях, обладающих высокой прочностью и малой растяжимостью (кости, сухожилия, кожа, зубы и т. д.). В коллагене треть аминокислотных остатков приходится на глицин, а около четверти или чуть более - на пролин или гидроксипролин.

Изолированная полипептидная цепь коллагена (первичная структура) похожа на ломаную линию. Она содержит около 1000 аминокислот и имеет молекулярную массу порядка 10 5 (рис. 5, а, б). Полипептидная цепь построена из повторяющейся тройки аминокислот (триплет) следующего состава: гли-А-В, где А и В - любые, кроме глицина, аминокислоты (чаше всего пролин и гидроксипролин). Полипептидные цепи коллагена (или α-цепи) при формировании вторичной и третичной структур (рис. 5, в и г) не могут давать типичных α-спиралей, имеющих винтовую симметрию. Этому мешают пролин, гидроксипролин и глицин (антиспиральные аминокислоты). Поэтому три α-цепи образуют как бы скрученные спирали подобно трем нитям, обвивающим цилиндр. Три спиральные α-цепи формируют повторяющуюся структуру коллагена, которая называется тропоколлагеном (рис. 5, г). Тропоколлаген по своей организации является третичной структурой коллагена. Плоские кольца пролина и оксипролина, регулярно чередующиеся вдоль цепи, придают ей жесткость, как и межцепочечные связи между α-цепями тропоколлагена (поэтому коллаген устойчив к растяжению). Тропоколлаген является, по существу, субъединицей фибрилл коллагена. Укладка тропоколлагеновых субъединиц в четвертичную структуру коллагена происходит ступенеобразно (рис. 5, д).

Стабилизация структур коллагена происходит за счет межцепочечных водородных, ионных и ван-дер-ваальсовых связей и небольшого количества ковалентных связей.

α-Цепи коллагена имеют разное химическое строение. Различают α 1 -цепи разных видов (I, II, III, IV) и α 2 -цепи. В зависимости от того, какие α 1 - и α 2 -цепи участвуют в образовании трехцепочечной спирали тропоколлагена, различают четыре типа коллагена:

  • первый тип - две α 1 (I) и одна α 2 -цепи;
  • второй тип - три α 1 (II)-цепи;
  • третий тип - три α 1 (III)-цепи;
  • четвертый тип - три α 1 (IV)-цепи.

Наиболее распространен коллаген первого типа: он содержится в костной ткани, коже, сухожилиях; коллаген второго типа содержится в хрящевой ткани и т. д. В одном виде ткани могут быть разные типы коллагена.

Упорядоченная агрегация коллагеновых структур, их жесткость и инертность обеспечивают высокую прочность коллагеновых волокон. Коллагеновые белки содержат также углеводные компоненты, т. е. являются белок-углеводными комплексами.

Коллаген - внеклеточный белок, который образуется клетками соединительной ткани, входящей во все органы. Поэтому с повреждением коллагена (или нарушением его образования) возникают множественные нарушения опорных функций соединительной ткани органов.

Страница 3 всего страниц: 7

Белки - одни из важных органических элементов любой живой клетки организма. Они выполняют множество функций: опорную, сигнальную, ферментативную, транспортную, структурную, рецепторную и т. д. Важным эволюционным приспособлением стали первичная, вторичная, третичная и четвертичная структуры белков. Из чего состоят эти молекулы? Почему так важна правильная конформация протеинов в клетках организма?

Структурные компоненты белков

Мономерами любой полипептидной цепи являются аминокислоты (АК). Эти низкомолекулярные органические соединения достаточно распространены в природе и могут существовать как самостоятельные молекулы, выполняющие свойственные им функции. Среди них транспорт веществ, рецепция, ингибирование или активация ферментов.

Всего насчитывается около 200 биогенных аминокислот, однако только 20 из них могут быть Они легко растворяются в воде, имеют кристаллическую структуру и многие из них сладкие на вкус.

С химической точки зрения АК - это молекулы, в составе которых обязательно присутствуют две функциональные группы: -СООН и -NH2. С помощью этих групп аминокислоты образуют цепочки, соединяясь друг с другом пептидной связью.

Каждая из 20 протеиногенных аминокислот имеет свой радикал, в зависимости от которого разнятся химические свойства. По составу таких радикалов все АК классифицируются на несколько групп.

  1. Неполярные: изолейцин, глицин, лейцин, валин, пролин, аланин.
  2. Полярные и незаряженные: треонин, метионин, цистеин, серин, глутамин, аспарагин.
  3. Ароматические: тирозин, фенилаланин, триптофан.
  4. Полярные и заряженные отрицательно: глутамат, аспартат.
  5. Полярные и заряженные положительно: аргинин, гистидин, лизин.

Любой уровень организации структуры белка (первичный, вторичный, третичный, четвертичный) в основе имеет полипептидную цепь, состоящую из АК. Разница лишь в том, как эта последовательность складывается в пространстве и с помощью каких химических связей такая конформация поддерживается.

Первичная структура белка

Любой протеин образуется на рибосомах - немембранных органеллах клетки, которые участвуют в синтезе полипептидной цепочки. Здесь аминокислоты соединяются друг с другом с помощью прочной пептидной связи, образуя первичную структуру. Однако такая первичная структура белка от четвертичной крайне отличается, поэтому необходимо дальнейшее созревание молекулы.

Такие белки, как эластин, гистоны, глутатион, уже с такой простейшей структурой способны выполнять свои функции в организме. Для подавляющего же числа протеинов следующим этапом становится образование более сложной вторичной конформации.

Вторичная структура белка

Образование пептидных связей - это первый этап созревания большинства белков. Чтобы они могли выполнять свои функции, их локальная конформация должна претерпеть некоторые изменения. Достигается это с помощью водородных связей - непрочных, но в то же время многочисленных соединений между основным и кислотным центрами молекул аминокислот.

Так формируется вторичная структура белка, от четвертичной отличающаяся простотой комплектации и локальной конформацией. Последнее означает, что не вся цепь подвергается преобразованию. Водородные связи могут образовываться на нескольких участках разной отдаленности друг от друга, причем их форма также зависит от типа аминокислот и способа комплектации.

Лизоцим и пепсин - это представители белков, имеющих вторичную структуру. Пепсин участвует в процессах пищеварения, а лизоцим выполняет защитную функцию в организме, разрушая клеточные стенки бактерий.

Особенности вторичной структуры

Локальные конформации пептидной цепи могут отличаться друг от друга. Их уже изучено несколько десятков, и три из них являются наиболее распространенными. Среди них альфа-спираль, бета-слои и бета-поворот.

  • Альфа-спираль - одна из часто встречающихся конформаций вторичной структуры большинства белков. Представляет собой жесткий стержневой каркас с ходом в 0,54 нм. Радикалы аминокислот направлены наружу.

Наиболее распространены правозакрученные спирали, и иногда можно найти левозакрученные аналоги. Формообразующую функцию выполняют водородные связи, которые стабилизируют завитки. Цепь, которая образует альфа-спираль, содержит очень мало пролина и полярных заряженных аминокислот.

  • Бета-поворот выделяют в отдельную конформацию, хотя это можно назвать частью бета-слоя. Суть заключается в изгибе пептидной цепочки, который поддерживается водородными связями. Обычно само место изгиба состоит из 4-5 аминокислот, среди которых обязательно наличие пролина. Эта АК единственная имеет жесткий и короткий скелет, что позволяет образовать сам поворот.
  • Бета-слой представляет собой цепочку аминокислот, которая образует несколько изгибов и стабилизирует их водородными связями. Такая конформация очень напоминает сложенный в гармошку лист бумаги. Чаще всего такую форму имеют агрессивные белки, однако встречается немало исключений.

Различают параллельный и антипараллельный бета-слой. В первом случае С- и N- концы в местах изгиба и на концах цепи совпадают, а во втором случае нет.

Третичная структура

Дальнейшая упаковка белка приводит к формированию третичной структуры. Стабилизируется такая конформация с помощью водородных, дисульфидных, гидрофобных и ионных связей. Их большое количество позволяет скрутить вторичную структуру в более сложную форму и стабилизировать ее.

Разделяют глобулярные и Молекула глобулярных пептидов представляет собой шаровидную структуру. Примеры: альбумин, глобулин, гистоны в третичной структуре.

Формируют прочные тяжи, длина которых превышает их ширину. Такие протеины чаще всего выполняют структурную и формообразующую функции. Примерами служат фиброин, кератин, коллаген, эластин.

Структура белков в четвертичной структуре молекулы

Если несколько глобул объединяются в один комплекс, формируется так называемая четвертичная структура. Такая конформация характерна не для всех пептидов, и она образуется при необходимости выполнения важных и специфических функций.

Каждая глобула в составе представляет собой отдельный домен или протомер. В совокупности молекулы называется олигомером.

Обычно такой белок имеет несколько устойчивых конформаций, которые постоянно сменяют друг друга либо в зависимости от воздействия каких-либо внешних факторов, либо при необходимости выполнения разных функций.

Важным отличием третичной структуры белка от четвертичной являются межмолекулярные связи, которые и отвечают за соединение нескольких глобул. В центре всей молекулы часто располагается ион металла, который напрямую влияет на образование межмолекулярных связей.

Дополнительные структуры белка

Не всегда цепочки аминокислот достаточно для выполнения функций белка. В большинстве случаев к таким молекулам присоединяются другие вещества органической и неорганической природы. Т. к. эта особенность характерна для подавляющего числа ферментов, состав сложных протеидов принято делить на три части:

  • Апофермент - это белковая часть молекулы, представляющая собой аминокислотную последовательность.
  • Кофермент - не белковая, но органическая часть. В ее состав могут входить различные типы липидов, углеводов или даже нуклеиновых кислот. Сюда относятся и представители биологически активных соединений, среди которых встречаются витамины.
  • Кофактор - неорганическая часть, представленная в подавляющем большинстве случаев ионами металлов.

Структура белков в четвертичной структуре молекулы требует участия нескольких молекул разного происхождения, поэтому многие ферменты имеют сразу три составляющие. Примером служит фосфокиназа - фермент, обеспечивающий перенос фосфатной группы от молекулы АТФ.

Где образуется четвертичная структура молекулы белка?

Полипептидная цепь начинает синтезироваться на рибосомах клетки, однако дальнейшее созревание протеина происходит уже в других органеллах. Новообразованная молекула должна попасть в транспортную систему, которая состоит из ядерной мембраны, ЭПС, аппарата Гольджи и лизосом.

Усложнение пространственного строения белка происходит в эндоплазматической сети, где не только формируются различные виды связей (водородные, дисульфидные, гидрофобные, межмолекулярные, ионные), но и присоединяются кофермент и кофактор. Так образуется четвертичная структура белка.

Когда молекула полностью готова к работе, она попадает либо в цитоплазму клетки, либо в аппарат Гольджи. В последнем случае эти пептиды упаковываются в лизосомы и транспортируются к другим компартментам клетки.

Примеры олигомерных белков

Четвертичная структура - это структура белков, которая призвана способствовать выполнению жизненно важных функций в живом организме. Сложная конформация органических молекул позволяет, прежде всего, влиять на работу многих метаболических процессов (ферменты).

Биологически важными белками являются гемоглобин, хлорофилл и гемоцианин. Порфириновое кольцо является основой этих молекул, в центре которых - ион металла.

Гемоглобин

Четвертичная структура молекулы белка гемоглобина представляет собой 4 глобулы, соединенных межмолекулярными связями. В центре - порфин с ионом двухвалентного железа. Белок переносится в цитоплазме эритроцитов, где занимают около 80 % всего объема цитоплазмы.

Основой молекулы является гем, который имеет больше неорганическую природу и окрашен в красный цвет. Также это распада гемоглобина в печени.

Все мы знаем, что гемоглобин выполняет важную транспортную функцию - перенос кислорода и углекислого газа по организму человека. Сложная конформация молекулы белка формирует специальные активные центры, которые и способны связывать соответствующие газы с гемоглобином.

Когда образуется комплекс "белок-газ", формируются так называемые оксигемоглобин и карбогемоглобин. Однако есть еще одна разновидность таких объединений, которая достаточно устойчива: карбоксигемоглобин. Представляет собой комплекс из белка и угарного газа, устойчивость которого объясняет приступы удушья при чрезмерной токсикации.

Хлорофилл

Еще один представитель белков с четвертичной структурой, связи доменов которого поддерживает уже ион магния. Главная функция всей молекулы - участие в процессах фотосинтеза у растений.

Существуют различные типы хлорофиллов, которые отличаются друг от друга радикалами порфиринового кольца. Каждая из этих разновидностей отмечается отдельной буквой латинского алфавита. Например, для наземных растений характерно наличие хлорофилла а или хлорофилла b, а у водорослей встречаются и другие типы этого белка.

Гемоцианин

Эта молекула - аналог гемоглобина у многих низших животных (членистоногие, моллюски и т. д.). Основным отличием структуры белка с четвертичной структурой молекулы является наличие иона цинка вместо иона железа. Гемоцианин имеет голубоватый цвет.

Иногда люди задаются вопросом о том, что было бы, если заменить гемоглобин человека гемоцианином. В таком случае нарушается привычное содержание веществ в крови, а в частности аминокислот. Также гемоцианин нестабильно образует комплекс с углекислым газом, поэтому «голубая кровь» имела бы склонность к образованию тромбов.


Самое обсуждаемое
Викторина по басням Крылова Викторина по басням Крылова
Программа полевой практики Полевая практика по естествознанию готовый дневник Программа полевой практики Полевая практика по естествознанию готовый дневник
Цианобактерии по способу питания являются Цианобактерии по способу питания являются


top