Теорема об изменении количества движения материальной точки. Динамика относительного движения

Теорема об изменении количества движения материальной точки. Динамика относительного движения

Дифференциальное уравнение движения материальной точки под действием силы F можно представить в следующей векторной форме:

Так как масса точки m принята постоянной, то её можно внести под знак производной. Тогда

Формула (1) выражает теорему об изменении количества движения точки в дифференциальной форме: первая производная по времени от количества движения точки равна действующей на точку силе .

В проекциях на координатные оси (1) можно представить в виде

Если обе части (1) умножить на dt , то получим другую форму этой же теоремы – теорему импульсов в дифференциальной форме:

т.е. дифференциал от количества движения точки равен элементарному импульсу силы, действующей на точку.

Проецируя обе части (2) на координатные оси, получаем

Интегрируя обе части (2) в пределах от нуля до t (рис. 1), имеем

где - скорость точки в момент t ; - скорость при t = 0;

S - импульс силы за время t .

Выражение в форме (3) часто называют теоремой импульсов в конечной (или интегральной) форме: изменение количества движения точки за какой-либо промежуток времени равно импульсу силы за тот же промежуток времени.

В проекциях на координатные оси эту теорему можно представить в следующем виде:

Для материальной точки теорема об изменении количества движения в любой из форм, по существу, не отличается от дифференциальных уравнений движения точки.

Теорема об изменении количества движения системы

Количеством движения системы будем называть векторную величину Q , равную геометрической сумме (главному вектору) количеств движения всех точек системы.

Рассмотрим систему, состоящую изn материальных точек. Составим для этой системы дифференциальные уравнения движения и сложим их почленно. Тогда получим:

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим:

Уравнение (4) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил.

Найдём другое выражение теоремы. Пусть в момент t = 0 количество движения системы равно Q 0 , а в момент времени t 1 становится равным Q 1 . Тогда, умножая обе части равенства (4) на dt и интегрируя, получим:

Или , где:

(S- импульс силы)

так как интегралы, стоящие справа, дают импульсы внешних сил,

уравнение (5) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.


В проекциях на оси координат будем иметь:

Закон сохранения количества движения

Из теоремы об изменении количества движения системы можно получить следующие важные следствия:

1. Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (4) следует, что при этом Q =const.

Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по 10модулю и направлению.

2. 01Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Ох) равна нулю:

Тогда из уравнений (4`) следует, что при этом Q = const.

Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить суммарное количество движения системы не могут.

Рассмотрим некоторые примеры:

· Я в л е н и е о т д а ч и и л и о т к а т а. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщит винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

· Р а б о т а г р е б н о г о в и н т а (п р о п е л л е р а). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получают соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы остается равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

· Р е а к т и в н о е д в и ж е н и е. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления будут силами внутренними и они не могут изменить суммарное количество движения системы ракета- пороховые газы. Но так как вырывающиеся газы имеют известное количество движения,направленное назад, то ракета получает при этом соответствующую скорость движения вперед.

Теорема моментов относительно оси.

Рассмотрим материальную точку массы m , движущуюся под действием силы F . Найдем для неё зависимость между моментом векторов mV и F относительно какой-нибудь неподвижной оси Z.

m z (F) = xF - уF (7)

Аналогично для величины m (mV) , если вынести m за скобку будет

m z (mV) = m(хV - уV) (7`)

Беря от обеих частей этого равенства производные по времени, находим

В правой части полученного выражения первая скобка равна 0, так как dx/dt=V и dу /dt = V , вторая же скобка согласно формуле (7) равна

m z (F) , так как по основному закону динамики:

Окончательно будем иметь (8)

Полученное уравнение выражает теорему моментов относительно оси: производная по времени от момента количества движения точки относительно какой-нибудь оси равна моменту действующей силы относительно той же оси. Аналогичная теорема имеет место и для моментов относительно любого центра О.

Так как масса точки постоянна, а ее ускорение то уравнение (2), выражающее основной закон динамики, можно представить в виде

Уравнение (32) выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна сумме действующих на точку сил

Пусть движущаяся точка имеет в момент времени скорость а в момент - скорость Умножим тогда обе части равенства (32) на и возьмем от них определенные интегралы. При этом справа, где интегрирование идет по времени, пределами интеграла будут а слева, где интегрируется скорость, пределами интеграла будут соответствующие значения скорости

Так как интеграл от равен то в результате получим

Стоящие справа интегралы, как следует из формулы (30), представляют собой импульсы действующих сил. Поэтому окончательно будет

Уравнение (33) выражает теорему об изменении количества движения точки в конечном виде: изменение количества движения точки за некоторый промежуток времени равно сумме импульсов всех действующих на точку сил за тот же промежуток времени.

При решении задач вместо векторного уравнения (33) часто пользуются уравнениями в проекциях. Проектируя обе части равенства (33) на координатные оси, получим

В случае прямолинейного движения, происходящего вдоль оси теорема выражается первым из этих уравнений.

Решение задач. Уравнения (33) или (34) позволяют, зная как при движении точки изменяется ее скорость, определить импульс действующих сил (первая задача динамики) или, зная импульсы действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их импульсы, Как видно из равенств (30) или (31), это можно сделать лишь тогда, когда силы постоянны или зависят только от времени.

Таким образом, уравнения (33), (34) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят: действующие силы, время движения точки и ее начальная и конечная скорости (т. е. величины ), причем силы должны быть постоянными или зависящими только от времени.

Задача 95. Точка, масса которой кг, движется по окружности с численно постоянной скоростью Определить импульс действующей на точку силы за время, в течение которого точка проходит четверть окружности

Решение. По теореме об изменении количества движения Строя геометрически разность этих количеств движения (рис. 222), находим из полученного прямоугольного треугольника

Но по условиям задачи следовательно,

Для аналитического подсчета можно, используя первые два из уравнений (34), найти

Задача 96. Грузу, имеющему массу и лежащему на горизонтальной плоскости, сообщают (толчком) начальную скорость Последующее движение груза тормозится постоянной силой F. Определить, через сколько времени груз остановится,

Решение. По данным задачи видно, что для определения времени движения можно воспользоваться доказанной теоремой. Изображаем груз в произвольном положении (рис. 223). На него действуют сила тяжести Р, реакция плоскости N и тормозящая сила F. Направляя ось в сторону движения, составляем первое из уравнений (34)

В данном случае - скорость в момент остановки), а . Из сил проекцию на ось дает только сила F. Так как она постоянна, то где - время торможения. Подставляя все эти данные в уравнение (а), получаем откуда искомое время

В качестве системы, о которой идёт речь в теореме, может выступать любая механическая система, состоящая из любых тел.

Формулировка теоремы

Количеством движения (импульсом) механической системы называют величину, равную сумме количеств движения (импульсов) всех тел, входящих в систему. Импульс внешних сил, действующих на тела системы, - это сумма импульсов всех внешних сил, действующих на тела системы.

( кг·м/с)

Теорема об изменении количества движения системы утверждает

Изменение количества движения системы за некоторый промежуток времени равно импульсу внешних сил, действующих на систему, за тот же промежуток времени.

Закон сохранения количества движения системы

Если сумма всех внешних сил, действующих на систему, равна нулю, то количество движения (импульс) системы есть величина постоянная.

, получим выражение теоремы об изменении количества движения системы в дифференциальной форме :

Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми и , получим выражение теоремы об изменении количества движения системы в интегральной форме:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения ) утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.

(моме́нт коли́чества движе́ния м 2 ·кг·с −1 )

Теорема об изменении момента количества движения относительно центра

производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

dk 0 /dt = M 0 (F ) .

Теорема об изменении момента количества движения относительно оси

производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

dk x /dt = M x (F ); dk y /dt = M y (F ); dk z /dt = M z (F ) .

Рассмотрим материальную точку M массой m , движущуюся под действием силы F (рисунок 3.1). Запишем и построим вектор момента количества движения (кинетического момента) M 0 материальной точки относительно центра O :

Дифференцируем выражение момента количества движения (кинетического момента k 0) по времени:

Так как dr /dt = V , то векторное произведение V m V (коллинеарных векторов V и m V ) равно нулю. В то же время d(m V) /dt = F согласно теореме о количестве движения материальной точки. Поэтому получаем, что

dk 0 /dt = r F , (3.3)

где r F = M 0 (F ) – вектор-момент силы F относительно неподвижного центра O . Вектор k 0 ⊥ плоскости (r , m V ), а вектор M 0 (F ) ⊥ плоскости (r ,F ), окончательно имеем

dk 0 /dt = M 0 (F ) . (3.4)

Уравнение (3.4) выражает теорему об изменении момента количества движения (кинетического момента) материальной точки относительно центра: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

Проецируя равенство (3.4) на оси декартовых координат, получаем

dk x /dt = M x (F ); dk y /dt = M y (F ); dk z /dt = M z (F ) . (3.5)

Равенства (3.5) выражают теорему об изменении момента количества движения (кинетического момента) материальной точки относительно оси: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

Рассмотрим следствия, вытекающие из теорем (3.4) и (3.5).

Следствие 1. Рассмотрим случай, когда сила F во все время движения точки проходит через неподвижный центр O (случай центральной силы), т.е. когда M 0 (F ) = 0. Тогда из теоремы (3.4) следует, что k 0 = const ,

т.е. в случае центральной силы момент количества движения (кинетический момент) материальной точки относительно центра этой силы остается постоянным по модулю и направлению (рисунок 3.2).

Рисунок 3.2

Из условия k 0 = const следует, что траектория движущейся точки представляет собой плоскую кривую, плоскость которой проходит через центр этой силы.

Следствие 2. Пусть M z (F ) = 0, т.е. сила пересекает ось z или ей параллельна. В этом случае, как это видно из третьего из уравнений (3.5), k z = const ,

т.е. если момент действующей на точку силы относительно какой-либо неподвижной оси всегда равен нулю, то момент количества движения (кинетический момент) точки относительно этой оси остается постоянным.

Доказательство теоремы обь ихменении количества движения

Пусть система состоит из материальных точек с массами и ускорениями . Все силы, действующие на тела системы, разделим на два вида:

Внешние силы - силы, действующие со стороны тел, не входящих в рассматриваемую систему. Равнодействующую внешних сил, действующих на материальную точку с номером i обозначим .

Внутренние силы - силы, с которыми взаимодействуют друг с другом тела само́й системы. Силу, с которой на точку с номером i действует точка с номером k , будем обозначать , а силу воздействия i -й точки на k -ю точку - . Очевидно, что при , то

Используя введённые обозначения, запишем второй закон Ньютона для каждой из рассматриваемых материальных точек в виде

Учитывая, что и суммируя все уравнения второго закона Ньютона, получаем:

Выражение представляет собой сумму всех внутренних сил, действующих в системе. По третьему закону Ньютона в этой сумме каждой силе соответствует сила такая, что и, значит, выполняется Поскольку вся сумма состоит из таких пар, то и сама сумма равна нулю. Таким образом, можно записать

Используя для количества движения системы обозначение , получим

Введя в рассмотрение изменение импульса внешних сил , получим выражение теоремы об изменении количества движения системы в дифференциальной форме:

Таким образом, каждое из последних полученных уравнений позволяет утверждать: изменение количества движения системы происходит только в результате действия внешних сил, а внутренние силы никакого влияния на эту величину оказать не могут.

Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми и , получим выражение теоремы об изменении количества движения системы в интегральной форме:

где и - значения количества движения системы в моменты времени и соответственно, а - импульс внешних сил за промежуток времени . В соответствии со сказанным ранее и введёнными обозначениями выполняется

Теорема об изменении количества движения точки

Так как масса точки постоянна, а ее ускорение то уравне­ние, выражающее основной закон динамики, можно представить в виде

Уравнение выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна геометрической сумме действующих на точку сил.

Проинтегрируем это уравнение. Пусть точка массы m , движущаяся под действием силы (рис.15), имеет в момент t =0 скорость , а в момент t 1 -скорость .

Рис.15

Умножим тогда обе части равенства на и возь­мем от них определенные интегралы. При этом справа, где интегри­рование идет по времени, пределами интегралов будут 0 и t 1 , а слева, где интегрируется скорость, пределами интеграла будут соответствую­щие значения скорости и . Так как интеграл от равен , то в результате получим:

.

Стоящие справа интегралы пред­ставляют собою импульсы действующих сил. Поэтому окончательно будем иметь:

.

Уравнение выражает теорему об изменении коли­чества движения точки в конечном виде: изменение коли­чества движения точки за некоторый промежуток времени равно геометрической сумме импульсов всех действующих на точку сил за тот же промежуток времени (рис. 15).

При решении задач вместо векторного уравнения часто пользуются уравнениями в проекциях.

В случае прямолинейного движения, происходящего вдоль оси Ох теорема выражается первым из этих уравнений.

Пример 9. Найти закон движения материальной точки массы m , движущейся вдоль оси х под действием постоянной по модулю силы F (рис. 16) при начальных условиях: , при .

Рис.16

Решение. Составим дифференциальное уравнение движения точки в проекции на ось х : . Интегрируя это уравнение, находим: . Постоянная определяется из начального условия для скорости и равна . Окончательно

.

Далее, учитывая, что v = dx/ dt , приходим к дифференциальному уравнению: , интегрируя которое получаем

Постоянную определяем из начального условия для координаты точки. Она равна . Следовательно, закон движения точки имеет вид

Пример 10 . Груз веса Р (рис.17) начинает двигаться из состояния покоя вдоль гладкой горизонтальной плоскости под действием силы F = kt . Найти закон движения груза.

Рис.17

Решение. Выберем начало отсчета системы координат О в начальном положении груза и направим ось х в сторону движения (рис. 17). Тогда начальные условия имеют вид: x (t = 0) = 0,v(t = 0) = 0. На груз действуют силы F, P и сила реакции плоскости N . Проекции этих сил на ось х имеют значения F x = F = kt , Р x = 0, N x = 0, поэтому соответствующее уравнение движения можно записать так: . Разделяя переменные в этом дифференциальном уравнении и затем интегрируя, получим: v = g kt 2 /2P + C 1 . Подставляя начальные данные (v (0) = 0), находим, чтоC 1 = 0, и получаем закон изменения скорости .

Последнее выражение, в свою очередь, является дифференциальным уравнением, интегрируя которое найдем закон движения материальной точки: . Входящую сюда постоянную определяем из второго начального условия х (0) = 0. Легко убедиться, что . Окончательно

Пример 11. На груз, находящийся в покое на горизонтальной гладкой плоскости (см. рис. 17) на расстоянии a от начала координат, начинает действовать в положительном направлении осиx сила F = k 2 (P /g )x , где Р – вес груза. Найти закон движения груза.

Решение. Уравнение движения рассматриваемого груза (материальной точки) в проекции на ось х

Начальные условия уравнения (1) имеют вид: x (t = 0) = a , v(t = 0) = 0.

Входящую в уравнение (1) производную по времени от скорости представим так

.

Подставляя это выражение в уравнение (1) и сокращая на (P /g ), получим

Разделяя переменные в последнем уравнении, находим, что . Интегрируя последнее, имеем: . Используя начальные условия , получаем , и, следовательно,

, . (2)

Поскольку сила действует на груз в положительном направлении оси х , то ясно, что в том же направлении он должен и двигаться. Поэтому в решении (2) следует выбрать знак "плюс". Заменяя дальше во втором выражении (2) на , получаем дифференциальное уравнение для определения закона движения груза. Откуда, разделяя переменные, имеем

.

Интегрируя последнее, находим: . После нахождения постоянной окончательно получаем

Пример 12. Шар M массы m (рис.18) падает без начальной скорости под действием силы тяжести. При падении шар испытывает сопротивление , где постоянный коэффициент сопротивления. Найти закон движения шара.

Рис.18

Решение. Введем систему координат с началом в точке местоположения шара при t = 0, направив ось у вертикально вниз (рис. 18). Дифференциальное уравнение движения шара в проекции на ось у имеет тогда вид

Начальные условия для шара записываются так: y (t = 0) = 0, v(t = 0) = 0.

Разделяя переменные в уравнении (1)

и интегрируя, находим: , где . Или после нахождения постоянной

или . (2)

Отсюда следует, что предельная скорость, т.е. скорость при , равна .

Чтобы найти закон движения, заменим в уравнении (2) v на dy/ dt . Тогда, интегрируя полученное уравнение с учетом начального условия, окончательно находим

.

Пример 13. Научно-исследо­ватель­ская подводная лодка шарообразной формы и массы m = = 1.5×10 5 кг начинает погружаться с выключенными двигателями, имея горизонтальную скорость v х 0 = 30 м/с и отрицательную плавучесть Р 1 = 0.01mg , где – векторная сумма архимедовой выталкивающей силы Q и силы тяжести mg , действующих на лодку (рис. 20). Сила сопротивления воды , кг/с . Определить уравнения движения лодки и ее траекторию.

Количеством движения материальной точки называется векторная величина mV, равная произведению массы точки на вектор ее скорости. Вектор mV приложен к движущейся точке.

Количеством движения системы называют векторную величину Q , равную геометрической сумме (главному вектору) количеств движения всех точек системы:

Вектор Q является свободным вектором. В системе единиц СИ модуль количества движения измеряется в кг м/с или Н с.

Как правило, скорости всех точек системы различны (см., например, распределение скоростей точек катящегося колеса, показанное на рис. 6.21), и поэтому непосредственное суммирование векторов в правой части равенства (17.2) является затруднительным. Найдем формулу, с помощью которой величина Q вычисляется значительно легче. Из равенства (16.4) следует, что

Взяв от обеих частей производную по времени, получим Отсюда, учитывая равенство (17.2), находим, что

т. е. количество движения системы равно произведению массы всей системы на скорость ее центра масс.

Заметим, что вектор Q, подобно главному вектору сил в статике, является некоторой обобщенной векторной характеристикой движения всей механической системы. В общем случае движения системы ее количество движения Q можно рассматривать как характеристику поступательной части движения системы вместе с ее центром масс. Если при движении системы (тела) центр масс неподвижен, то количество движения системы будет равно нулю. Таково, например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс.

Пример. Определить количество движения механической системы (рис. 17.1, а), состоящей из груза А массой т А - 2 кг, однородного блока В массой 1 кг и колеса D массой m D - 4 кг. Груз А движется со скоростью V A - 2 м/с, колесо D катится без скольжения, нить нерастяжима и невесома. Решение. Количество движения системы тел

Тело А движется поступательно и Q A =m A V A (численно Q A = 4 кг м/с, направление вектора Q A совпадает с направлением V A). Блок В совершает вращательное движение вокруг неподвижной оси, проходящей через его центр масс; следовательно, Q B - 0. Колесо D совершает плоскопараллельное


движение; его мгновенный центр скоростей находится в точке К , поэтому скорость его центра масс (точки Е) равна V E = V A /2= 1 м/с. Количество движения колеса Q D - m D V E - 4 кг м/с; вектор Q D направлен горизонтально влево.

Изобразив векторы Q A и Q D на рис. 17.1, б , находим количество движения Q системы по формуле (а). Учитывая направления и числовые значения величин, получим Q ~^Q A +Q E =4л/2~ кг м/с, направление вектора Q показано на рис. 17.1, б.

Учитывая, что a -dV/dt, уравнение (13.4) основного закона динамики можно представить в виде

Уравнение (17.4) выражает теорему об изменении количества движения точки в дифференциальной форме: в каждый момент времени производная по времени от количества движения точки равна действующей на точку силе. (По существу это другая формулировка основного закона динамики, близкая к той, которую дал Ньютон.) Если на точку действует несколько сил, то в правой части равенства (17.4) будет равнодействующая сил, приложенных к материальной точке.

Если обе части равенства умножить на dt, то получим

Векторная величина, стоящая в правой части этого равенства, характеризует действие, оказываемое на тело силой за элементарный промежуток времени dt эту величину обозначают dS и называют элементарным импульсом силы, т. е.

Импульс S силы F за конечный промежуток времени /, - / 0 определяется как предел интегральной суммы соответствующих элементарных импульсов, т. е.


В частном случае, если сила F постоянна по модулю и по направлению, то S = F(t | -/ 0) и S- F(t l - / 0). В общем случае модуль импульса силы может быть вычислен по его проекциям на координатные оси:


Теперь, интегрируя обе части равенства (17.5) при т = const, получим

Уравнение (17.9) выражает теорему об изменении количества движения точки в конечной (интегральной) форме: изменение количества движения точки за некоторый промежуток времени равно импульсу действующей на точку силы (или импульсу равнодействующей всех приложенных к ней сил) за тот же промежуток времени.

При решении задач пользуются уравнениями этой теоремы в проекциях на координатные оси


Теперь рассмотрим механическую систему, состоящую из п материальных точек. Тогда для каждой точки можно применить теорему об изменении количества движения в форме (17.4), учитывая приложенные к точкам внешние и внутренние силы:

Суммируя эти равенства и учитывая, что сумма производных равна производной от суммы, получаем

Так как по свойству внутренних сил HF k =0 и по определению количества движения ^fn k V/ c = Q , то окончательно находим


Уравнение (17.11) выражает теорему об изменении количества движения системы в дифференциальной форме: в каждый момент времени производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.11) на координатные оси, получим

Умножая обе части (17.11) на dt и интегрируя, получим

где 0, Q 0 - количества движения системы в моменты времени соответственно и / 0 .

Уравнение (17.13) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за какое-либо время равно сумме импульсов всех внешних сил, действующих на систему за то же время.

В проекциях на координатные оси получим

Из теоремы об изменении количества движения системы можно получить следующие важные следствия, которые выражают закон сохранения количества движения системы.

  • 1. Если геометрическая ^умма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.11) следует, что при этом Q = const, т. е. вектор количества движения системы будет постоянен по модулю и направлению.
  • 2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-либо ось равна нулю (например, I e kx = 0), то из уравнений (17.12) следует, что при этом Q x = const, т. е. проекция количества движения системы на эту ось остается неизменной.

Отметим, что внутренние силы системы не участвуют в уравнении теоремы об изменении количества движения системы. Эти силы, хотя и влияют на количество движения отдельных точек системы, не могут изменить количество движения системы в целом. Учитывая это обстоятельство, при решении задач рассматриваемую систему целесообразно выбирать так, чтобы неизвестные силы (все или их часть) сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению скорости одной части системы надо определить скорость другой ее части.

Задача 17.1. К тележке массой т х - 12 кг, движущейся по гладкой горизонтальной плоскости, в точке А с помощью цилиндрического шарнира прикреплен невесомый стержень AD длиной /= 0,6 м с грузом D массой т 2 - 6 кг на конце (рис. 17.2). В момент времени / 0 = 0, когда скорость тележки и {) - 0,5 м/с, стержень AD начинает вращаться вокруг оси А, перпендикулярной плоскости чертежа, по закону ф = (тг/6)(3^ 2 - 1) рад (/-в секундах). Определить: u=f.

§ 17.3. Теорема о движении центра масс

Теорему об изменении количества движения механической системы можно выразить еще в другой форме, носящей название теоремы о движении центра масс.

Подставив в уравнение (17.11) равенство Q =MV C , получим

Если масса М системы постоянна, то получим

где а с - ускорение центра масс системы.

Уравнение (17.15) и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.15) на координатные оси, получим

где x c , y c , z c - координаты центра масс системы.

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Обсудим полученные результаты. Предварительно напомним, что центр масс системы является геометрической точкой, расположенной подчас вне геометрических границ тела. Действующие же на механическую систему силы (внешние и внутренние) приложены ко всем материальным точкам системы. Уравнения (17.15) дают возможность определить движение центра масс системы, не определяя движения отдельных ее точек. Сопоставив уравнения (17.15) теоремы о движении центра масс и уравнения (13.5) второго закона Ньютона для материальной точки, приходим к заключению: центр масс механической системы движется как материальная точка, масса которой равна массе всей системы, и как будто бы к этой точке приложены все внешние силы, действующие на систему. Таким образом, решения, которые получаем, рассматривая данное тело как материальную точку, определяют закон движения центра масс этого тела.

В частности, если тело движется поступательно, то кинематические характеристики всех точек тела и его центра масс одинаковы. Поэтому поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе всего тела.

Как видно из (17.15), внутренние силы, действующие на точки системы, не оказывают влияния на движение центра масс системы. Внутренние силы могут оказать влияние на движение центра масс в тех случаях, когда под их воздействием меняются внешние силы. Примеры этого будут приведены далее.

Из теоремы о движении центра масс можно получить следующие важные следствия, которые выражают закон сохранения движения центра масс системы.

1. Если геометрическая сумма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.15) следует,

что при этом а с = 0 или V c = const, т. е. центр масс этой системы

движется с постоянной по модулю и направлению скоростью (иначе, равномерно и прямолинейно). В частном случае, если вначале центр масс был в покое (V c =0), то он и останется в покое; откуда

следует, что его положение в пространстве не изменится, т. е. r c = const.

2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ось х) равна нулю (?F e kx = 0), то из уравнения (17.16) следует, что при этом х с =0 или V Cx =х с = const, т. е. проекция скорости центра масс системы на эту ось есть величина постоянная. В частном случае, если в начальный момент Vex = 0, то и в любой последующий момент времени это значение сохранится, а отсюда следует, что координата х с центра масс системы не изменится, т. е. х с - const.

Рассмотрим примеры, иллюстрирующие закон движения центра масс.

Примеры. 1. Как было отмечено, движение центра масс зависит только от внешних сил, внутренними силами изменить положение центра масс нельзя. Но внутренние силы системы могут вызвать внешние воздействия. Так, движение человека по горизонтальной поверхности происходит под действием сил трения между подошвами его обуви и поверхностью дороги. Силой своих мышц (внутренние силы) человек ногами отталкивается от поверхности дороги, отчего в точках контакта с дорогой возникает сила трения (внешняя для человека), направленная в сторону его движения.

  • 2. Аналогичным образом двигается автомобиль. Внутренние силы давления в его двигателе заставляют вращаться колеса, но так как последние имеют сцепление с дорогой, то возникающие силы трения «толкают» машину вперед (в результате колеса не вращаются, а двигаются плоскопараллельно). Если же дорога будет абсолютно гладкой, то центр масс автомобиля будет неподвижен (при нулевой начальной скорости) и колеса при отсутствии трения будут пробуксовывать, т. е. совершать вращательное движение.
  • 3. Движение с помощью гребного винта, пропеллера, весел происходит за счет отбрасывания некоторой массы воздуха (или воды). Если рассматривать отбрасываемую массу и движущееся тело как одну систему, то силы взаимодействия между ними, как внутренние, не могут изменить суммарное количество движения этой системы. Однако каждая из частей этой системы будет двигаться, например, лодка вперед, а вода, которую отбрасывают весла, - назад.
  • 4. В безвоздушном пространстве при движении ракеты «отбрасываемую массу» следует «брать с собой»: реактивный двигатель сообщает движение ракете за счет отброса назад продуктов горения топлива, которым заправлена ракета.
  • 5. При спуске на парашюте можно управлять движением центра масс системы человек - парашют. Если мышечными усилиями человек подтягивает стропы парашюта так, что меняется форма его купола либо угол атаки воздушного потока, то это вызовет изменение и внешнего воздействия воздушного потока, а тем самым оказывается влияние на движение всей системы.

Задача 17.2. В задаче 17.1 (см. рис. 17.2) определить: 1) закон движения тележки х { = /)(/), если известно, что в начальный момент времени t 0 = О система находилась в покое и координата х 10 = 0; 2) ^акон изменения со временем суммарного значения нормальной реакции N(N = N" + N") горизонтальной плоскости, т. е. N=f 2 (t).

Решение. Здесь, как и в задаче 17.1, рассмотрим систему, состоящую из тележки и груза D, в произвольном положении под действием приложенных к ней внешних сил (см. рис. 17.2). Координатные оси Оху проведем так, чтобы ось х была горизонтальна, а ось у проходила через точку А 0 , т. е. место расположения точки А в момент времени t-t 0 - 0.

1. Определение закона движения тележки. Для определения х, = /,(0 воспользуемся теоремой о движении центра масс системы. Составим дифференциальное уравнение его движения в проекции на ось х:

Так как все внешние силы вертикальны, то T,F e kx = 0, и, следовательно,

Проинтегрировав это уравнение, найдем, что Мх с = В, т. е. проекция скорости центра масс системы на ось х есть величина постоянная. Так как в начальный момент времени

Интегрируя уравнение Мх с = 0, получим

т. е. координата х с центра масс системы постоянна.

Запишем выражение Мх с для произвольного положения системы (см. рис. 17.2), приняв во внимание, что х А - х { , x D - х 2 и х 2 - х { - I sin ф. В соответствии с формулой (16.5), определяющей координату центра масс системы, в данном случае Мх с - т { х { + т 2 х 2 ".

для произвольного момента времени

для момента времени / () = 0, х { = 0 и

В соответствии с равенством (б) координата х с центра масс всей системы остается неизменной, т. е. хД^,) = x c (t). Следовательно, приравняв выражения (в) и (г), получим зависимость координаты х, от времени.

О т в е т: Х - 0,2 м, где t - в секундах.

2. Определение реакции N. Для определения N=f 2 (t ) составим дифференциальное уравнение движения центра масс системы в проекции на вертикальную ось у (см. рис. 17.2):

Отсюда, обозначив N= N + N", получим

По формуле, определяющей ординату у с центра масс системы, Му с = т { у х + т 2 у 2 , где у, = у С1 , у 2 = y D = У а ~ 1 cos Ф» получим

Продифференцировав это равенство два раза по времени (учитывая при этом, что у С1 и у А величины постоянные и, следовательно, их производные равны нулю), найдем


Подставив это выражение в уравнение (е), определим искомую зависимость N от t.

Ответ: N- 176,4 + 1,13,

где ф = (я/6)(3/ -1), t - в секундах, N- в ньютонах.

Задача 17.3. Электрический мотор массой т х прикреплен на горизонтальной поверхности фундамента болтами (рис. 17.3). На валу мотора под прямым углом к оси вращения закреплен одним концом невесомый стержень длиной /, на другом конце стержня насажен точечный груз А массой т 2 . Вал вращается равномерно с угловой скоростью со. Найти горизонтальное давление мотора на болты. Решение. Рассмотрим механическую систему, состоящую из мотора и точечного груза А, в произвольном положении. Изобразим действующие на систему внешние силы: силы тяжести Р х, Р 2 , реакцию фундамента в виде вертикальной силы N и горизонтальной силы R. Проведем координатную ось х горизонтально.

Чтобы определить горизонтальное давление мотора на болты (а оно будет численно равно реакции R и направлено противоположно вектору R ), составим уравнение теоремы об изменении количества движения системы в проекции на горизонтальную ось х:

Для рассматриваемой системы в ее произвольном положении, учитывая, что количество движения корпуса мотора равно нулю, получим Q x = - т 2 У А сощ. Принимая во внимание, что V A = a з/, ф = со/ (вращение мотора равномерное), получим Q x - - m 2 co/cos со/. Дифференцируя Q x по времени и подставляя в равенство (а), найдем R- m 2 co 2 /sin со/.

Заметим, что именно такие силы являются вынуждающими (см. § 14.3), при их воздействии возникают вынужденные колебания конструкций.

Упражнения для самостоятельной работы

  • 1. Что называют количеством движения точки и механической системы?
  • 2. Как изменяется количество движения точки, равномерно движущейся по окружности?
  • 3. Что характеризует импульс силы?
  • 4. Влияют ли внутренние силы системы на ее количество движения? На движение ее центра масс?
  • 5. Как влияют на движение центра масс системы приложенные к ней пары сил?
  • 6. При каких условиях центр масс системы находится в покое? движется равномерно и прямолинейно?

7. В неподвижной лодке при отсутствии течения воды на корме сидит взрослый человек, а на носу лодки - ребенок. В каком направлении переместится лодка, если они поменяются местами?

В каком случае модуль перемещения лодки будет большим: 1) если ребенок перейдет к взрослому на корму; 2) если взрослый перейдет к ребенку на нос лодки? Каковы будут при этих движениях перемещения центра масс системы «лодка и два человека»?



top