Приведение плоской произвольной системы сил центру. Приведение плоской системы сил к центру

Приведение плоской произвольной системы сил центру. Приведение плоской системы сил к центру

Лекция 5

Краткое содержание: Приведение силы к заданному центру. Приведение системы сил к заданному центру. Условия равновесия пространственной системы параллельных сил. Условия равновесия плоской системы сил. Теорема о трех моментах. Статически определимые и статически неопределимые задачи. Равновесие системы тел.

ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ЗАДАННОМУ ЦЕНТРУ. УСЛОВИЯ РАВНОВЕСИЯ

Приведение силы к заданному центру.

Равнодействующая системы сходящихся сил непосредственно находится с помощью сложения сил по правилу параллелограмма. Очевидно, что аналогичную задачу можно будет решить и для произвольной системы сил, если найти для них метод, позволяющий перенести все силы в одну точку.

Теорема о параллельном переносе силы . Силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого ею действия, переносить из данной точки в любую другую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, куда сила переносится.

Пусть сила приложена в точке A. Действие этой силы не изменяется, если в точке B приложить две уравновешенные силы. Полученная система трех сил представляет собой силу равную , но приложенную в точке В и пару с моментом . Процесс замены силы силой и парой сил называется приведением силы к заданному центру В.

Приведение системы сил к заданному центру.

Основная теорема статики (Пуансо).

Любую произвольную систему сил, действующую на твердое тело, можно в общем случае привести к силе и паре сил. Этот процесс замены системы сил одной силой и одной парой сил называется приведением системы сил к заданному центру .

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

Главным моментом системы сил относительно точки О тела, называется вектор, равный векторной сумме моментов всех сил системы относительно этой точки.

Формулы для вычисления главного вектора и главного момента

Формулы для вычисления модуля и направляющих косинусов

главного вектора и главного момента

Условия равновесия системы сил.

Векторная форма.

Для равновесия произвольной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы главный вектор системы сил был равен нулю и главный момент системы сил относительно любого центра приведения также был равен нулю.

Алгебраическая форма.

Для равновесия произвольной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы три суммы проекций всех сил на оси декартовых координат были равны нулю и три суммы моментов всех сил относительно трех осей координат также были равны нулю.

Условия равновесия пространственной системы

параллельных сил.

На тело действует система параллельных сил. Расположим ось Oz параллельно силам.

Уравнения

Для равновесия пространственной системы параллельных сил, действующих на твердое тело, необходимо и достаточно, чтобы сумма проекций этих сил была равна нулю и суммы моментов этих сил относительно двух координатных осей, перпендикулярным силам, также были равны нулю.

- проекция силы на ось Oz.

ПЛОСКАЯ СИСТЕМА СИЛ.

Условия равновесия плоской системы сил.

На тело действует плоская система сил. Расположим оси Ox и Oy в плоскости действия сил.

Уравнения

Для равновесия плоской системы сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы проекций этих сил на каждую из двух прямоугольных осей координат, расположенных в плоскости действия сил, были равны нулю и сумма моментов этих сил относительно любой точки, находящейся в плоскости действия сил также была равна нулю.

Теорема о трех моментах.

Для равновесия плоской системы сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы моментов этих сил системы относительно трех любых точек, расположенных в плоскости действия сил и не лежащих на одной прямой, были равны нулю.

Статически определимые и статически неопределимые задачи.

Для любой плоской системы сил, действующих на твердое тело, имеется три независимых условия равновесия. Следовательно, для любой плоской системы сил из условий равновесия можно найти не более трех неизвестных.

В случае пространственной системы сил, действующих на твердое тело, имеется шесть независимых условия равновесия. Следовательно, для любой пространственной системы сил из условий равновесия можно найти не более шести неизвестных.

Задачи, в которых число неизвестных не больше числа независимых условий равновесия для данной системы сил, приложенных к твердому телу, называются статически определимыми .

В противном случае задачи статически неопределимы.

Равновесие системы тел.

Рассмотрим равновесие сил, приложенных к системе взаимодействующих между собой тел. Тела могут быть соединены между собой с помощью шарниров или иным способом.

Силы, действующие на рассматриваемую систему тел, можно разделить на внешние и внутренние.

Внешними называются силы, с которыми на тела рассматриваемой системы действуют тела, не входящие в эту систему сил.

Внутренними называются силы взаимодействия между телами рассматриваемой системы.

При рассмотрении равновесия сил, приложенных к системе тел, можно мысленно расчленить систему тел на отдельные твердые тела и к силам, действующим на эти тела, применить условия равновесия, полученные для одного тела. В эти условия равновесия войдут как внешние, так и внутренние силы системы тел. Внутренние силы на основании аксиомы о равенстве сил действия и противодействия в каждой точке сочленения двух тел образуют равновесную систему сил.

Покажем это на примере системы двух тел и плоской системы сил.

Если составить условия равновесия для каждого твердого тела системы тел, то для тела I

.

для тела II

Кроме того, из аксиомы о равенстве сил действия и противодействия для двух взаимодействующих тел имеем .

Представленные равенства и есть условия равновесия внешних сил, действующих на систему.

Реакция заделки.

Рассмотрим балку один конец которой АВ заделан в стену. Такое крепление конца балки АВ называется заделкой в точке В. Пусть на балку действует плоская система сил. Определим силы, которые надо приложить к точке В балки, если часть балки АВ отбросить. К сечению балки (В) приложены распределенные силы реакции. Если эти силы заменить элементарными сосредоточенными силами и затем привести их к точке В, то в точке В получим силу (главный вектор сил реакции) и пару сил с моментом М (главный вектор сил реакции относительно точки В) . Момент М называют моментом заделки или рективным моментом. Силу реакции можно заменить двумя составляющими и.

Заделка в отличие от шарнира создает не только неизвестную по величине и направлению реакцию , но еще и пару сил с неизвестным моментом М в заделке.

Предположим, что произвольная плоская система сил приводится к одной силе, равной главному вектору и приложенной к центру приведения, и к одной паре с моментом, равным главному моменту
(рисунок 57, а ). Докажем, что рассматриваемая произвольная плоская система сил приводится в этом общем случае к равнодействующей силе
, линия действия которой проходит через точку А , отстоящую от выбранного центра приведения О на расстоянии
. Для этого преобразуем пару с моментом
так, чтобы силы и
, составляющие эту пару, оказались равными по модулю главному вектору R". При этом нужно подобрать плечо пары так, чтобы ее момент т
оставался равным М 0 .Для этого плечо пары
нужно, очевидно, находить из равенства

. (1)

Пользуясь тем, что пару всегда можно перемещать в ее плоскости действия как угодно, переместим пару
так, чтобы ее сила
оказалась приложенной в центре приведения О и противоположно направленной главному вектору
(рисунок 57, б ).

Рассматриваемая произвольная плоская система сил эквивалентна, таким образом, силе
и паре
. Отбрасывая силы
и
как уравновешенные, получим, что вся рассматриваемая система сил заменяется одной силой
, являющейся, следовательно, равнодействующей. При этом линия действия равнодействующей будет проходить через точку А , положение которой относительно выбранного центра приведения определяется формулой (1).

Если же в результате приведения произвольной плоской системы сил окажется, что
, а
, то в этом частном случае эта система сил сразу заменяется одной силой, т. е. равнодействующей
, линия действия которой проходит через выбранный центр приведения.

Задача 7 . К точкам В и С тела соответственно приложены равные по модулю и взаимно перпендикулярные силы и
, отстоящие от точки О тела на равных расстояниях
. Привести эту систему сил к точке О (рисунок 58).

Решение. Перенесем силы ипараллельно самим себе в точкуО . В результате такого переноса получим (рисунок 58) силы
и
, приложенные в точке О , и присоединенные пары
и
, лежащие в одной плоскости с моментами
и
(силы, образующие эти пары отмечены на рисунке 58 черточками). От геометрического сложения сили, приложенных в точкеО , получим главный вектор данной системы сил

модуль которого, очевидно, равен

От сложения присоединенных пар получим равнодействующую пару, момент которой равен главному моменту
данной системы сил относительно точкиО :

Следовательно, данная система двух сил иимеет равнодействующую

,

приложенную в точке А , которая отстоит от точки О на расстоянии

.

;
,

т. е. равнодействующая образует с обеими данными силами иравные углы по 45 0 .

Задача 8. На мостовую ферму (рисунок 59) действуют вертикальные силы
т и
т соответственно на расстоянии 10м и 40 м от левого конца фермы и горизонтальная сила
т на уровне верхнего пояса фермы, высота фермы равна 6м . Привести систему сил ,ипростейшему виду.

Решение. Проводим оси координат так, как показано на рисунке 59, взяв начало координат в точке А. Найдем проекции главного вектора заданной системы сил на оси выбранной системы координат:

откуда находим модуль главного вектора
:

т
.

Найдем теперь главный момент заданной системы сил относительно начала координат А:

т·м
.

Следовательно, данная система сил имеет равнодействующую
, модуль которой
т.

Теперь найдем линию действия равнодействующей. Момент равнодействующей относительно начала координат А определится но формуле

,

где х и y - координаты точки, лежащей на линии действия равнодействующей. Так как
т и
т, то

.

С другой стороны, по теореме Вариньона о моменте равнодействующей (5, § 11) имеем

Следовательно,

.

Это и есть уравнение линии действия равнодействующей.

Полагая в этом уравнении
, находим, что точка пересечения линии действия равнодействующейс верхним поясом фермы находится на расстоянии
м от левого конца фермы. Полагая же
м , находим, что точка пересечения линии действия равнодействующей с нижнем поясом фермы находится на расстоянии
м от левого конца фермы. Соединения определенные таким образом точки пересечения линий действия равнодействующей с верхним и нижнем поясом фермы прямой линией, находим линию действия равнодействующей.

Метод приведения одной силы к данной точке можно применить к какому угодно числу сил. Допустим, что в некото­рых точках тела (рис. 1.24) приложены силы F 1 F 2 , F 3 и F 4 . Тре­буется привести эти силы к точке О плоскости. Приведем сначала силу приложенную в точ­ке А. Приложим (см. § 16) в точке О две силы рав­ные порознь по значению заданной силе параллель­ные ей и направленные в про­тивоположные стороны. В ре­зультате приведения силы получим силу , приложен­ную в точке О, и пару сил с плечом . Поступив таким же образом с силой , приложенной в точке В, получим силу , приложенную в точке О, и пару сил с плечом и т. д. Плоскую систему сил, приложенных в точках А, В, С и D, мы заменили сходящимися силами , приложенными в точке О, и парами сил с моментами, равными моментам заданных сил относительно точки О:

рис.1.24

Сходящиеся в точке силы можно заменить одной силой равной геометрической сумме составляющих,

Эту силу, равную геометрической сумме заданных сил, называют главным вектором системы сил и обозначают .

По величине проекций главного вектора на оси координат находим модуль главного вектора:

На основании правила сложения пар сил их можно заменить результирующей парой, момент которой равен алгебраической сумме моментов заданных сил относительно точки О и называется главным моментом относительно точки приведения

Таким образом, произвольная плоская система сил приводиться к одной силе (главному вектору системы сил) и одному моменту (главному моменту системы сил).

Необходимо усвоить, сто главный вектор не является равнодействующей данной системы сил, так как эта система не эквивалентна одной силе . Так как главный вектор равен геометрической сумме сил заданной системе, то ни модуль, ни направление его не зависит от выбора центра приведения. Значение и знак главного момента зависит от положения центра приведения, так как плечи составляющих пар зависят от взаимного положения сил и точки (центра) относительно которой берутся моменты.

Частные случаи приведения системы сил:

1) ; система находиться в равновесии, т.е. для равновесия плоской системы сил необходимо и достаточно, чтобы ее главный вектор и главный момент одновременно были равны нулю.

Плоская система сил тоже приводится к силе, равной и приложенной в произвольно выбранном центре О, и паре с моментом

при этом вектор можно определить или геометрически построением силового многоугольника (см. п. 4), или аналитически. Таким образом, для плоской системы сил

R x =F kx , R y =F ky ,

где все моменты в последнем равенстве алгебраические и сумма тоже алгебраическая.

Найдем, к какому простейшему виду может приводиться данная плоская система сил, не находящаяся в равновесии. Результат зависит от значений R и М O .

  • 1. Если для данной системы сил R=0, a M O ?0, то она приводится к одной паре с моментом М O , значение которого не зависит от выбора центра О.
  • 2. Если для данной системы сил R?0, то она приводится к одной силе, т. е. к равнодействующей. При этом возможны два случая:
    • а) R?0, М O =0. В этом случае система, что сразу видно, приводится к равнодействующей R, проходящей через центр О;
    • б) R?0, М O ?0. В этом случае пару с моментом М O можно изобразить двумя силами R" и R", беря R"=R, a R"= - R. При этом, если d=OC - плечо пары, то должно быть Rd=|M O |.

Отбросив теперь силы R и R", как уравновешенные, найдем, что вся система сил заменяется равнодействующей R"=R, проходящей через точку С. Положение точки С определяется двумя условиями: 1) расстояние OC=d () должно удовлетворять равенству Rd=|M O |; 2) знак момента относительно центра О силы R", приложенной в точке С, т. е. знак m O (R") должен совпадать со знаком М O .

Лекция 3

Краткое содержание: Приведение произвольной и плоской системы сил к центру. Теорема о параллельном переносе силы, основная теорема статики Приведении системы сил к данному центру Главный вектор и главный момент системы сил. Зависимость главного момента от выбора центра. Аналитическое определение главного вектора и главного момента системы сил. Инварианты системы сил. Приведение системы сил к простейшему виду. Частные случаи приведения произвольной системы сил, динамический винт. Теорема Вариньона о моменте равнодействующей.

Приведение силы к заданному центру (Лемма Пуансо)

Равнодействующая системы сходящихся сил непосредственно находится с помощью сложения сил по правилу параллелограмма. Очевидно, что аналогичную задачу можно будет решить и для произвольной системы сил, если найти для них метод, позволяющий перенести все силы в одну точку.

Лемма Пуансо о параллельном переносе силы . . Не изменяя действия силы на твердое тело, ее можно переносить параллельно самой себе в любую точку тела, добавляя при этом пару, момент которой равен моменту данной силы относительно новой точки приложения.

Пусть сила приложена в точке A. Действие этой силы не изменяется, если в точке B приложить две уравновешенные силы. Полученная система трех сил представляет собой силу равную , но приложенную в точке В и пару с моментом . Процесс замены силы силой и парой сил называется приведением силы к заданному центру В. ■

Приведение системы сил к заданному центру.

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

Главным моментом системы сил относительно точки О тела, называется вектор, равный векторной сумме моментов всех сил системы относительно этой точки.

Теорема Пуансо (Основная теорема статики)

Произвольную систему сил, действующую на твердое тело, можно заменить эквивалентной системой, состоящей из силы и пары сил. Сила равна главному вектору системы сил и приложена в произвольно выбранной точке (центре приведения), момент пары равен главному

моменту системы сил относительно этой точки.

ДОКАЗАТЕЛЬСТВО.

Точка О - центр приведения. По лемме Пуансо перенесем силу F1 в точку О. При этом вместо F1 имеем в точке О такую же силу F1’ и дополнительно пару сил с моментом m1.


Аналогично перенесем все остальные силы. В результате получим систему сходящихся сил и систему пар сил. По теореме о существовании равнодействующей системы сходящихся

сил их можно заменить одной силой R, равной главному вектору. Систему пар по теореме о сложении пар можно заменить одной парой, момент которой равен главному моменту Mo. ■

Инварианты статики

Инварианты статики - характеристики системы сил, не зависящие от выбора центра приведения.

Первый инвариант статики - главный вектор системы сил (по определению).

Второй инвариант статики - скалярное произведение главного вектора и главного момента.

В самом деле, главный момент, очевидно, зависит от выбора центра приведения. Рассмотрим произвольную систему сил . Приведем ее сначала к центру О, а затем к центру О 1 .

Из рисунка видно,что .Поэтому формула для примет вид

Или .

Домножим обе части этого равенства на соответственно, учитывая что главный вектор системы сил является первым инвариантом статики: . По

свойству смешанного произведения векторов , следовательно:

.

Если воспользоваться определением скалярного произведения, то для второго инварианта можно получить еще одну форму:

Так как , то предыдущее выражение примет вид:

Таким образом, проекция главного момента на направление главного вектора есть величина постоянная для данной системы сил и не зависит от выбора центра приведения.

Частные случаи приведения произвольной системы сил к простейшему виду

1) Если при приведении системы сил к центру О то на основании (6.4) можно записать

.

равнодействующей , приложенной в центре приведения и совпадающей по величине и направлению с главным вектором.

2)Если при приведении системы сил к центру О

то представив в виде пары сил с плечом ,

получим: .

В этом случае система сил приводится к равнодействующей , совпадающей по величине и направлению с главным вектором, а линия действия равнодействующей отстоит от линии действия главного вектора на расстоянии .

3)Если при приведении системы сил к центру О то можно записать

,то есть система сил приводится к паре сил с моментом, равным главному моменту системы сил.

4)Если при приведении системы сил к центру О то можно записать

Т.е. система сил находится в равновесии .

Определение: Система, состоящая из силы и пары сил, момент которой коллинеарен силе (плоскость пары перпендикулярна линии действия силы), называется динамой или динамическим винтом .

Если при приведении системы сил к центру О второй инвариант не равен нулю, то эта система сил приводится к динаме .

Разложив на две составляющие - вдоль главного вектора и - перпендикулярно главному вектору, для и будем иметь случай 2),а вектор , как свободный можно перенести параллельно самому себе в точку О 1:

Вектора представляют собой динаму, где , .

В рассматриваемом случае приведения системы сил главный момент имеет минимальное значение. Это значение момента сохраняется при приведении заданной системы сил к любой точке, лежащей на линии действия главного вектора и главного момента . Уравнение этой линии(центральная винтовая ось системы сил) определяется из условия коллинеарности векторов и : .


Самое обсуждаемое
Презентация на тему трафальгарская площадь Презентация на тему английский язык трафальгарская площадь Презентация на тему трафальгарская площадь Презентация на тему английский язык трафальгарская площадь
Приукрашенное сообщение – искажения при передаче информации Что такое искаженная информация Приукрашенное сообщение – искажения при передаче информации Что такое искаженная информация
Народы и страны южной америки Общее население южной америки Народы и страны южной америки Общее население южной америки


top