Алгебраические выражения. Дробные рациональные выражения

Алгебраические выражения.  Дробные рациональные выражения

Алгебраическое выражение - это любая запись из букв, чисел, знаков арифметических действий и скобок, составленная со смыслом. По сути, алгебраическое выражение – это числовое выражение , в котором помимо чисел употребляются также и буквы. Поэтому алгебраические выражения также называют буквенными выражениями.

В основном в буквенных выражениях используют буквы латинского алфавита. Для чего же нужны эти буквы? Вместо них мы можем подставить различные числа. Поэтому эти буквы называются переменными. То есть они могут менять свое значение.

Примеры алгебраических выражений.

$\begin{align} & x+5;\,\,\,\,\,(x+y)\centerdot (x-y);\,\,\,\,\,\frac{a-b}{2}; \\ & \\ & \sqrt{{{b}^{2}}-4ac};\,\,\,\,\,\frac{2}{z}+\frac{1}{h};\,\,\,\,\,a{{x}^{2}}+bx+c; \\ \end{align}$


Если, например, в выражении x + 5 мы подставим вместо переменной х какое-нибудь число, то мы получим числовое выражение. При этом, значение этого числового выражения будет значением алгебраического выражения x + 5 при данном значении переменной. То есть, при x = 10, x + 5 = 10 + 5 = 15. А при x = 2, x + 5 = 2 + 5 = 7.

Бывают такие значения переменной, при котором алгебраическое выражение теряет смысл. Так, например, будет, если в выражение 1:x мы подставим вместо x значение 0.
Так как на нуль делить нельзя.

Область определения алгебраического выражения.

Множество значений переменной, при которых выражение не теряет смысл, называется областью определения этого выражения. Также можно сказать, что область определения выражения – это множество всех допустимых значений переменной.

Рассмотрим примеры:

  1. y+5 – областью определения будут любые значения y.
  2. 1:x – выражение будет иметь смысл при всех значениях x кроме 0. Поэтому областью определения будут любые значения x за исключением нуля.
  3. (x+y):(x-y) – область определения – любые значения x и y, при которых x ≠ y.
Виды алгебраических выражений.

Рациональные алгебраические выражения – это целые и дробные алгебраические выражения.

  1. Целое алгебраическое выражение – не содержит возведение в степень с дробным показателем, извлечение корня из переменной, а также деления на переменную. В целых алгебраических выражениях все значения переменных являются допустимыми. Например, ax + bx + c – целое алгебраическое выражение.
  2. Дробное – содержит деление на переменную. $\frac{1}{a}+bx+c$ - дробное алгебраическое выражение. В дробных алгебраических выражениях допустимыми являются все значения переменных, при которых не происходит деления на нуль.
Иррациональные алгебраические выражения содержат извлечение корня из переменной или возведение переменной в дробную степень.

$\sqrt{{{a}^{2}}+{{b}^{2}}};\,\,\,\,\,\,\,{{a}^{\frac{2}{3}}}+{{b}^{\frac{1}{3}}};$ - иррациональные алгебраические выражения. В иррациональных алгебраических выражениях допустимыми являются все значения переменных, при которых выражение, стоящее под знаком корня четной степени не отрицательно.

В публикации представлена логика различия алгебраических выражений для учащихся основного общего и среднего (полного) общего образования как переходной этап формирования логики различий математических выражений применяемых в физике и т.д. для формирования в дальнейшем понятий о явлениях, задачах, их классификации и методологии подхода их решения.

Скачать:


Предварительный просмотр:

Алгебраические выражения и их характеристики

© Скаржинский Я.Х.

Алгебра, как наука, изучает закономерности действий над множествами, обозначенных буквами. К алгебраическим действиям относят сложение, вычитание, умножение, деление, возведение в степень, извлечение корня. В результате данных действий образовались алгебраические выражения. Алгебраическое выражение - выражение, состоящее из чисел и букв, обозначающих множества, с которым осуществляют алгебраические действия. Данные действия перешли в алгебру из арифметики. В алгебре рассматривают и приравнивание одного алгебраического выражения другому, что является их тождественным равенством. Примеры алгебраических выражений приведены в §1. Методы преобразований и взаимосвязи выражений были тоже позаимствованы у арифметики . Знания арифметических закономерностей действий над арифметическими выражениями позволяют проводить преобразования над похожими алгебраическими выражениями, преобразовывать их, упрощать, сравнивать, анализировать. Алгебра – наука закономерностей преобразований выражений, состоящих из множеств, представленных в виде буквенных обозначений, связанных между собой знаками различных действий. Существуют и более сложные алгебраические выражения, изучаемые в высших учебных заведениях. Пока их можно разделить на виды, наиболее часто применяемые в школьном курсе.

1 Виды алгебраических выражений

п.1 Простые выражения: 4a; (a + b); (a + b)3с; ; .

п.2 Тождественные равенства: (a + b)с = aс + bс; ;

п.3 Неравенства: aс ; a + с .

п.4 Формулы: х=2а+5; у=3b; у=0,5d 2 +2;

п.5 Пропорции:

Первого уровня сложности

Второго уровня сложности

Третьего уровня сложности сточки зрения поиска значений для множеств

a, b, c, m, k, d:

Четвертого уровня сложности сточки зрения поиска значений для множеств а, у:

п.6 Уравнения:

ах+с = -5bх; 4х 2 +2х= 42;

И т.д.

п.7 Функциональные зависимости: у=3х; у=ах 2 +4b; у=0,5х 2 +2;

И т.д.

2 Рассмотрим алгебраические выражения

2.1 В п.1 представлены простые алгебраические выражения. Бывает вид и

сложнее, к примеру:

Как правило, такие выражения не имеют знака «=». Задачей при рассмотрении таких выражений является их преобразование и получение в упрощенном виде. При преобразовании алгебраического выражения, относящегося к п.1, получают новое алгебраическое выражение, которое по своему значению равнозначно предыдущему. Такие выражения, говорят, тождественно равнозначны. Т.е. алгебраическое выражение слева от знака равно, равнозначно по своему значению алгебраическому выражению справа. В таком случае получают алгебраическое выражение нового вида, называемое тождественным равенством (см. п. 2).

2.2 В п.2 представлены алгебраические тождественные равенства , которые образуются при алгебраических методах преобразования, рассматриваются алгебраические выражения, наиболее часто применяемые как методы при решении задач по физике. Примеры тождественных равенств алгебраических преобразований, применяемых часто в математике и физике:

Переместительный закон сложения: a + b = b + a.

Сочетательный закон сложения: (a + b) + с = a + (b + c).

Переместительный закон умножения: ab = ba.

Сочетательный закон умножения: (ab)с = a(bc).

Распределительный закон умножения относительно сложения:

(a + b)с = aс + bс.

Распределительный закон умножения относительно вычитания:

(a - b)с = aс - bс.

Тождественные равенства дробных алгебраических выражений (предполагается, что знаменатели дробей отличны от нуля):

Тождественные равенства алгебраических выражений со степенями:

а) ,

где (n раз, ) - степень с целым показателем

б) (a + b) 2 =а 2 +2ab+b 2 .

Тождественные равенства алгебраических выражений с корнями n- й степени:

Выражение - арифметический корень n -й степени из числа В частности, - арифметический квадратный.

Степень с дробным (рациональным) показателем корень:

Тождественные выше приведенные равнозначные выражения применяют для преобразований более сложных алгебраических выражений, не содержащих знака «=».

Рассмотрим пример, в котором для преобразований более сложного алгебраического выражения используют знания, приобретенные при преобразованиях более простых алгебраических выражений в виде тождественных равенств.

2.3 В п.3 представлены алгебраические н еравенства, у которых алгебраическое выражение левой части не равно правой, т.е. не являются тождественными. В таком случае они и являются неравенствами. Как правило, при решении некоторых задач по физике важны свойства неравенств:

1) Если a , то при любом c : a + с .

2) Если a и c > 0 , то aс .

3) Если a и c , то aс > bс .

4) Если a , a и b одного знака, то 1/a > 1/b .

5) Если a и c , то a + с , a - d .

6) Если a , c , a > 0 , b > 0 , c > 0 , d > 0 , то ac .

7) Если a , a > 0 , b > 0 , то

8) Если , то

2.4 В п.4 представлены алгебраические формулы т.е. алгебраические выражения, у которых с левой части от знака равенства стоит буква, обозначающая множество, значение которого неизвестно и его следует определить. А с правой части от знака равно стоят множества, значения которых известны. В данном случае это алгебраическое выражение называют алгебраической формулой.

Алгебраическая формула - это алгебраическое выражение, содержащее знак равенства, с левой стороны от которого находится множество, значение которого неизвестно, а справа – множества с известными значениями, исходя из условия задачи. Для определения неизвестного значения множества, стоящего слева от знака «равно», производят подстановку известных значений величин в правой части от знака «равно» и осуществляют арифметические вычислительные действия, обозначенные в алгебраическом выражении в этой части.

Пример 1:

Дано: Решение:

а=25 Пусть дано алгебраическое выражение:

х=? х=2а+5.

Данное алгебраическое выражение является алгебраической формулой т.к. слева от знака «равно» стоит множество, значение которого следует найти, а справа - множества с известными значениями.

Следовательно, можно осуществлять подстановку известного значения для множества «а», для определения неизвестного значения множества «х»:

х=2·25+5=55. Ответ: х=55.

Пример 2:

Дано: Решение:

а=25 Алгебраическое выражение является формулой.

b=4 Поэтому можно осуществлять подстановку известных

c=8 значений для множеств, находящихся справа от знака «равно»,

d=3 для определения неизвестного значения множества «k»,

m=20 стоящего слева:

n=6 Ответ: k=3,2.

В О П Р О С Ы

1 Что собой представляет алгебраическое выражение?

2 Какие виды алгебраических выражений вы знаете?

3 Какое алгебраическое выражение называют тождественным равенством?

4 Для чего необходимо знать шаблоны тождественных равенств?

5 Какое алгебраическое выражение называют формулой?

6 Какое алгебраическое выражение называют уравнением?

7 Какое алгебраическое выражение называют функциональной зависимостью?


(1) a m ⋅ a n = a m + n

Пример:

$${a^2} \cdot {a^5} = {a^7}$$ (2) a m a n = a m − n

Пример:

$$\frac{{{a^4}}}{{{a^3}}} = {a^{4 – 3}} = {a^1} = a$$ (3) (a ⋅ b) n = a n ⋅ b n

Пример:

$${(a \cdot b)^3} = {a^3} \cdot {b^3}$$ (4) (a b) n = a n b n

Пример:

$${\left({\frac{a}{b}} \right)^8} = \frac{{{a^8}}}{{{b^8}}}$$ (5) (a m) n = a m ⋅ n

Пример:

$${({a^2})^5} = {a^{2 \cdot 5}} = {a^{10}}$$ (6) a − n = 1 a n

Примеры:

$${a^{ – 2}} = \frac{1}{{{a^2}}};\;\;\;\;{a^{ – 1}} = \frac{1}{{{a^1}}} = \frac{1}{a}.$$

Свойства квадратного корня:

(1) a b = a ⋅ b , при a ≥ 0 , b ≥ 0

Пример:

18 = 9 ⋅ 2 = 9 ⋅ 2 = 3 2

(2) a b = a b , при a ≥ 0 , b > 0

Пример:

4 81 = 4 81 = 2 9

(3) (a) 2 = a , при a ≥ 0

Пример:

(4) a 2 = | a | при любом a

Примеры:

(− 3) 2 = | − 3 | = 3 , 4 2 = | 4 | = 4 .

Рациональные и иррациональные числа

Рациональные числа – числа, которые можно представить в виде обыкновенной дроби m n где m – целое число (ℤ = 0, ± 1, ± 2, ± 3 …), n – натуральное (ℕ = 1,   2,   3,   4 …).

Примеры рациональных чисел:

1 2 ;   − 9 4 ;   0,3333 … = 1 3 ;   8 ;   − 1236.

Иррациональные числа – числа, которые невозможно представить в виде обыкновенной дроби m n , это бесконечные непериодические десятичные дроби.

Примеры иррациональных чисел:

e = 2,71828182845…

π = 3,1415926…

2 = 1,414213562…

3 = 1,7320508075…

Проще говоря, иррациональные числа – это числа, содержащие в своей записи знак квадратного корня. Но не всё так просто. Некоторые рациональные числа маскируются под иррациональные, например, число 4 содержит в своей записи знак квадратного корня, но мы прекрасно понимаем, что можно упростить форму записи 4 = 2 . Это означает, что число 4 есть число рациональное.

Аналогично, число 4 81 = 4 81 = 2 9 есть число рациональное.

В некоторых задачах требуется определить, какие из чисел являются рациональными, а какие иррациональными. Задание сводится к тому, чтобы понять, какие числа иррациональные, а какие под них маскируются. Для этого нужно уметь совершать операции вынесения множителя из-под знака квадратного корня и внесения множителя под знак корня.

Внесение и вынесение множителя за знак квадратного корня

При помощи вынесения множителя за знак квадратного корня можно ощутимо упростить некоторые математические выражения.

Пример:

Упростить выражение 2 8 2 .

1 способ (вынесение множителя из-под знака корня): 2 8 2 = 2 4 ⋅ 2 2 = 2 4 ⋅ 2 2 = 2 ⋅ 2 = 4

2 способ (внесение множителя под знак корня): 2 8 2 = 2 2 8 2 = 4 ⋅ 8 2 = 4 ⋅ 8 2 = 16 = 4

Формулы сокращенного умножения (ФСУ)

Квадрат суммы

(1) (a + b) 2 = a 2 + 2 a b + b 2

Пример:

(3 x + 4 y) 2 = (3 x) 2 + 2 ⋅ 3 x ⋅ 4 y + (4 y) 2 = 9 x 2 + 24 x y + 16 y 2

Квадрат разности

(2) (a − b) 2 = a 2 − 2 a b + b 2

Пример:

(5 x − 2 y) 2 = (5 x) 2 − 2 ⋅ 5 x ⋅ 2 y + (2 y) 2 = 25 x 2 − 20 x y + 4 y 2

Сумма квадратов не раскладывается на множители

Разность квадратов

(3) a 2 − b 2 = (a − b) (a + b)

Пример:

25 x 2 − 4 y 2 = (5 x) 2 − (2 y) 2 = (5 x − 2 y) (5 x + 2 y)

Куб суммы

(4) (a + b) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3

Пример:

(x + 3 y) 3 = (x) 3 + 3 ⋅ (x) 2 ⋅ (3 y) + 3 ⋅ (x) ⋅ (3 y) 2 + (3 y) 3 = x 3 + 3 ⋅ x 2 ⋅ 3 y + 3 ⋅ x ⋅ 9 y 2 + 27 y 3 = x 3 + 9 x 2 y + 27 x y 2 + 27 y 3

Куб разности

(5) (a − b) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3

Пример:

(x 2 − 2 y) 3 = (x 2) 3 − 3 ⋅ (x 2) 2 ⋅ (2 y) + 3 ⋅ (x 2) ⋅ (2 y) 2 − (2 y) 3 = x 2 ⋅ 3 − 3 ⋅ x 2 ⋅ 2 ⋅ 2 y + 3 ⋅ x 2 ⋅ 4 y 2 − 8 y 3 = x 6 − 6 x 4 y + 12 x 2 y 2 − 8 y 3

Сумма кубов

(6) a 3 + b 3 = (a + b) (a 2 − a b + b 2)

Пример:

8 + x 3 = 2 3 + x 3 = (2 + x) (2 2 − 2 ⋅ x + x 2) = (x + 2) (4 − 2 x + x 2)

Разность кубов

(7) a 3 − b 3 = (a − b) (a 2 + a b + b 2)

Пример:

x 6 − 27 y 3 = (x 2) 3 − (3 y) 3 = (x 2 − 3 y) ((x 2) 2 + (x 2) (3 y) + (3 y) 2) = (x 2 − 3 y) (x 4 + 3 x 2 y + 9 y 2)

Стандартный вид числа

Для того, чтобы понять, как приводить произвольное рациональное число к стандартному виду, надо знать, что такое первая значащая цифра числа.

Первой значащей цифрой числа называют его первую слева отличную от нуля цифру.

Примеры:
2 5 ; 3 , 05 ; 0 , 1 43 ; 0 , 00 1 2 . Красным цветом выделена первая значащая цифра.

Для того, чтобы привести число к стандартному виду, надо:

  1. Сдвинуть запятую так, чтобы она была сразу за первой значащей цифрой.
  2. Полученное число умножить на 10 n , где n – число, которое определяется следующим образом:
  3. n > 0 , если запятая сдвигалась влево (умножение на 10 n , указывает, что на самом деле запятая должна стоять правее);
  4. n < 0 , если запятая сдвигалась вправо (умножение на 10 n , указывает, что на самом деле запятая должна стоять левее);
  5. абсолютная величина числа n равна количеству разрядов, на которое была сдвинута запятая.

Примеры:

25 = 2 , 5 ← ​ , = 2,5 ⋅ 10 1

Запятая сдвинулась влево на 1 разряд. Так как сдвиг запятой осуществляется влево, степень положительная.

Уже приведено к стандартному виду, делать ничего с ним не нужно. Можно записать, как 3,05 ⋅ 10 0 , но поскольку 10 0 = 1 , оставляем число в первоначальном виде.

0,143 = 0, 1 → , 43 = 1,43 ⋅ 10 − 1

Запятая сдвинулась вправо на 1 разряд. Так как сдвиг запятой осуществляется вправо, степень отрицательная.

− 0,0012 = − 0, 0 → 0 → 1 → , 2 = − 1,2 ⋅ 10 − 3

Запятая сдвинулась вправо на три разряда. Так как сдвиг запятой осуществляется вправо, степень отрицательная.


На уроках алгебры в школе мы сталкиваемся с выражениями различного вида. По мере изучения нового материала записи выражений становятся все разнообразнее и сложнее. Например, познакомились со степенями – в составе выражений появились степени, изучили дроби – появились дробные выражения и т.д.

Для удобства описания материала, выражениям, состоящим из схожих элементов, дали определенные названия, чтобы выделить их из всего разнообразия выражений. В этой статье мы ознакомимся с ними, то есть, дадим обзор основных выражений, изучаемых на уроках алгебры в школе.

Навигация по странице.

Одночлены и многочлены

Начнем с выражений, имеющих название одночлены и многочлены . На момент написания этой статьи разговор про одночлены и многочлены начинается на уроках алгебры в 7 классе. Там даются следующие определения.

Определение.

Одночленами называются числа, переменные, их степени с натуральным показателем, а также любые произведения, составленные из них.

Определение.

Многочлены – это сумма одночленов.

Например, число 5 , переменная x , степень z 7 , произведения 5·x и 7·x·2·7·z 7 – это все одночлены. Если же взять сумму одночленов, например, 5+x или z 7 +7+7·x·2·7·z 7 , то получим многочлен.

Работа с одночленами и многочленами часто подразумевает выполнение действий с ними. Так на множестве одночленов определено умножение одночленов и возведение одночлена в степень , в том смысле, что в результате их выполнения получается одночлен.

На множестве многочленов определено сложение, вычитание, умножение, возведение в степень. Как определяются эти действия, и по каким правилам они выполняются, мы поговорим в статье действия с многочленами .

Если говорить про многочлены с единственной переменной, то при работе с ними значительную практическую значимость имеет деление многочлена на многочлен , а также часто такие многочлены приходится представлять в виде произведения, это действие имеет название разложение многочлена на множители .

Рациональные (алгебраические) дроби

В 8 классе начинается изучение выражений, содержащих деление на выражение с переменными. И первыми такими выражениями выступают рациональные дроби , которые некоторые авторы называют алгебраическими дробями .

Определение.

Рациональная (алгебраическая) дробь это дробь, числителем и знаменателем которой являются многочлены, в частности, одночлены и числа.

Приведем несколько примеров рациональных дробей: и . К слову, любая обыкновенная дробь является рациональной (алгебраической) дробью.

На множестве алгебраических дробей вводятся сложение, вычитание, умножение, деление и возведение в степень. Как это делается объяснено в статье действия с алгебраическими дробями .

Часто приходится выполнять и преобразование алгебраических дробей , наиболее распространенными из них являются сокращение и приведение к новому знаменателю.

Рациональные выражения

Определение.

Выражения со степенями (степенные выражения) – это выражения, содержащие степени в своей записи.

Приведем несколько примеров выражений со степенями. Они могут не содержать переменных, например, 2 3 , . Также имеют место степенные выражения с переменными: и т.п.

Не помешает ознакомиться с тем, как выполняется преобразование выражений со степенями .

Иррациональные выражения, выражения с корнями

Определение.

Выражения, содержащие логарифмы называют логарифмическими выражениями .

Примерами логарифмических выражений являются log 3 9+lne , log 2 (4·a·b) , .

Очень часто в выражениях встречаются одновременно и степени и логарифмы, что и понятно, так как по определению логарифм есть показатель степени. В результате естественно выглядят выражения подобного вида: .

В продолжение темы обращайтесь к материалу преобразование логарифмических выражений .

Дроби

В этом пункте мы рассмотрим выражения особого вида - дроби.

Дробь расширяет понятие . Дроби также имеют числитель и знаменатель, находящиеся соответственно сверху и снизу горизонтальной дробной черты (слева и справа наклонной дробной черты). Только в отличие от обыкновенных дробей, в числителе и знаменателе могут быть не только натуральные числа, но и любые другие числа, а также любые выражения.

Итак, дадим определение дроби.

Определение.

Дробь – это выражение, состоящее из разделенных дробной чертой числителя и знаменателя, которые представляют собой некоторые числовые или буквенные выражения или числа.

Данное определение позволяет привести примеры дробей.

Начнем с примеров дробей, числителями и знаменателями которых являются числа: 1/4 , , (−15)/(−2) . В числителе и знаменателе дроби могут быть и выражения, как числовые, так и буквенные. Вот примеры таких дробей: (a+1)/3 , (a+b+c)/(a 2 +b 2) , .

А вот выражения 2/5−3/7 , дробями не являются, хотя и содержат дроби в своих записях.

Выражения общего вида

В старших классах, особенно в задачах повышенной трудности и задачах группы С в ЕГЭ по математике, будут попадаться выражения сложного вида, содержащие в своей записи одновременно и корни, и степени, и логарифмы, и тригонометрические функции, и т.п. Например, или . Они по виду подходят под несколько типов перечисленных выше выражений. Но их обычно не относят ни к одному из них. Их считают выражениями общего вида , а при описании говорят просто выражение, не добавляя дополнительных уточнений.

Завершая статью, хочется сказать, что если данное выражение громоздкое, и если Вы не совсем уверены, к какому виду оно относится, то лучше назвать его просто выражением, чем назвать его таким выражением, каким оно не является.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Алгебраическое выражение - это запись, составленная со смыслом, в которой числа могут быть обозначены и буквами, и цифрами. Также она может содержать знаки арифметических действий и скобки.

Любую букву, обозначающую число, и любое число, изображённое с помощью цифр, принято считать в алгебре также алгебраическим выражением.

Алгебраические выражения, входящие в состав формул, могут применяться к решению частных арифметических задач, если в них заменить буквы данными числами и произвести указанные действия. Число, которое получится, если взять вместо букв какие-либо числа и произвести над ними указанные действия, называется численной величиной алгебраического выражения. Из этого легко сделать вывод, что одно и то же алгебраическое выражение при различных значениях входящих в него букв может иметь различные числовые величины. Так, например, выражение

a m +b n

при a =2, m =5, b =1, n =4 вычисляется: 2 · 5 + 1 · 4 = 14, а при a =3, m =4, b =5, n =1 вычисляется: 3 · 4 + 5 · 1 = 17 и т.д.; выражение

a b с

при a =1, b =2, c =3, равно 6, а a =2, b =3, c =4, равно 24, и т.д.

Коэффициент

Произведение нескольких сомножителей a , b , c , d , пишется abcd . Если, кроме буквенных множителей, есть и численный (всё равно, целый или дробный), то он обычно ставится впереди и называется коэффициентом . Таким образом,

произведение величин a , b , c , d , 4 пишут так: 4abcd

произведение величин m , n , p пишут так: .

Числа 4 и - это коэффициенты. Очевидно, что 4abcd = abcd + abcd + abcd + abcd и точно также . Итак, коэффициент показывает, сколько раз целое алгебраическое выражение или известная его часть берется слагаемым.

Если при алгебраическом выражении нет коэффициента, то подразумевается, что он равен единице, так как a = 1 · a ; bc = 1 · bc и так далее.

Виды выражений

Алгебраическое выражение, в которое не входят буквенные делители, называется целым , в противном случае дробным или алгебраической дробью .


Самое обсуждаемое
Креационная теория сотворения мира Кто сотворил мир Креационная теория сотворения мира Кто сотворил мир
Владимирский базовый медицинский колледж Владимирский базовый медицинский колледж
Явление которое происходит только в мейозе Явление которое происходит только в мейозе


top