Методы регрессионного анализа. Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных Методы регрессионного анализа в статистике

Методы регрессионного анализа. Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных Методы регрессионного анализа в статистике

Регрессионный анализ

Регрессио́нный (линейный ) анализ - статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные - критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных (см. Ложная корреляция ), а не причинно-следственные отношения.

Цели регрессионного анализа

  1. Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными)
  2. Предсказание значения зависимой переменной с помощью независимой(-ых)
  3. Определение вклада отдельных независимых переменных в вариацию зависимой

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Математическое определение регрессии

Строго регрессионную зависимость можно определить следующим образом. Пусть , - случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений определено условное математическое ожидание

(уравнение регрессии в общем виде),

то функция называется регрессией величины Y по величинам , а её график - линией регрессии по , или уравнением регрессии .

Зависимость от проявляется в изменении средних значений Y при изменении . Хотя при каждом фиксированном наборе значений величина остаётся случайной величиной с определённым рассеянием.

Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение Y при изменении , используется средняя величина дисперсии Y при разных наборах значений (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).

Метод наименьших квадратов (расчёт коэффициентов)

На практике линия регрессии чаще всего ищется в виде линейной функции (линейная регрессия), наилучшим образом приближающей искомую кривую. Делается это с помощью метода наименьших квадратов , когда минимизируется сумма квадратов отклонений реально наблюдаемых от их оценок (имеются в виду оценки с помощью прямой линии, претендующей на то, чтобы представлять искомую регрессионную зависимость):

(M - объём выборки). Этот подход основан на том известном факте, что фигурирующая в приведённом выражении сумма принимает минимальное значение именно для того случая, когда .

Для решения задачи регрессионного анализа методом наименьших квадратов вводится понятие функции невязки :

Условие минимума функции невязки:

Полученная система является системой линейных уравнений с неизвестными

Если представить свободные члены левой части уравнений матрицей

а коэффициенты при неизвестных в правой части матрицей

то получаем матричное уравнение: , которое легко решается методом Гаусса . Полученная матрица будет матрицей, содержащей коэффициенты уравнения линии регрессии:

Для получения наилучших оценок необходимо выполнение предпосылок МНК (условий Гаусса−Маркова). В англоязычной литературе такие оценки называются BLUE (Best Linear Unbiased Estimators) − наилучшие линейные несмещенные оценки.

Интерпретация параметров регрессии

Параметры являются частными коэффициентами корреляции; интерпретируется как доля дисперсии Y, объяснённая , при закреплении влияния остальных предикторов, то есть измеряет индивидуальный вклад в объяснение Y. В случае коррелирующих предикторов возникает проблема неопределённости в оценках, которые становятся зависимыми от порядка включения предикторов в модель. В таких случаях необходимо применение методов анализа корреляционного и пошагового регрессионного анализа.

Говоря о нелинейных моделях регрессионного анализа, важно обращать внимание на то, идет ли речь о нелинейности по независимым переменным (с формальной точки зрения легко сводящейся к линейной регрессии), или о нелинейности по оцениваемым параметрам (вызывающей серьёзные вычислительные трудности). При нелинейности первого вида с содержательной точки зрения важно выделять появление в модели членов вида , , свидетельствующее о наличии взаимодействий между признаками , и т. д (см. Мультиколлинеарность).

См. также

Ссылки

  • www.kgafk.ru - Лекция на тему «Регрессионный анализ»
  • www.basegroup.ru - методы отбора переменных в регрессионные модели

Литература

  • Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. - 3-е изд. - М .: «Диалектика», 2007. - С. 912. - ISBN 0-471-17082-8
  • Устойчивые методы оценивания статистических моделей: Монография. - К. : ПП «Санспарель», 2005. - С. 504. - ISBN 966-96574-0-7 , УДК: 519.237.5:515.126.2, ББК 22.172+22.152
  • Радченко Станислав Григорьевич, Методология регрессионного анализа: Монография. - К. : "Корнийчук", 2011. - С. 376. - ISBN 978-966-7599-72-0

Wikimedia Foundation . 2010 .

После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х 1, х 2,…, х к отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.

Функция f(х 1, х 2,…, х к) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин «регрессия» (лат. -regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». С тех пор термин «регрессия» широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией? и оценкой y регрессии. Пусть результативный показатель у связан с аргументом х соотношением:

где - е случайная величина, имеющая нормальный закон распределения, причем Ме = 0 и D е = у 2 . Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х 1.5 .

Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+е, и представленной на рис. 1

Рисунок 1 - Взаимное расположение истиной f (х) и теоретической? модели регрессии

Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида? = в 0 +в 1 x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b 0 +b 1 x. Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х 1,5 , теоретической аппроксимирующей функции регрессии? = в 0 +в 1 x .

Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью? объяснялась бы только ограниченностью выборки.

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений,? = f(х i), где, х i - значение вектора аргументов в i-м наблюдении: ?(y i - f(х i) 2 > min. Получаемая регрессия называется среднеквадратической.

Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем,? = f(х i), среднеабсолютную медианную регрессию? |y i - f(х i)| >min.

Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных х j = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения х j.

Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у, являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией у 2 .

В общем линейная модель регрессионного анализа имеет вид:

Y = Уk j=0 вj цj (x1 , x2 . . .. ,xk )+Э

где ц j - некоторая функция его переменных - x 1 , x 2 . . .. ,x k , Э - случайная величина с нулевым математическим ожиданием и дисперсией у 2 .

В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.

Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в «среднем» у есть линейная функция от х, т. е. имеется уравнение регрессии

у=М(у/х)=в 0 + в 1 х)

где М(у1х) - условное математическое ожидание случайной величины у при заданном х; в 0 и в 1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.

Предположим, что для оценки параметров в 0 и в 1 из двухмерной генеральной совокупности (х, у) взята выборка объемом n, где (х, у,) результат i-го наблюдения (i = 1, 2,..., n). В этом случае модель регрессионного анализа имеет вид:

y j = в 0 + в 1 x+е j .

где е j .- независимые нормально распределенные случайные величины с нулевым математическим ожиданием и дисперсией у 2 , т. е. М е j . = 0;

D е j .= у 2 для всех i = 1, 2,..., n.

Согласно методу наименьших квадратов в качестве оценок неизвестных параметров в 0 и в 1 следует брать такие значения выборочных характеристик b 0 и b 1 , которые минимизируют сумму квадратов отклонений значений результативного признака у i от условного математического ожидания? i

Методику определения влияния характеристик маркетинга на прибыль предприятия рассмотрим на примере семнадцати типичных предприятий, имеющих средние размеры и показатели хозяйственной деятельности.

При решении задачи учитывались следующие характеристики, выявленные в результате анкетного опроса как наиболее значимые (важные):

* инновационная деятельность предприятия;

* планирование ассортимента производимой продукции;

* формирование ценовой политики;

* взаимоотношения с общественностью;

* система сбыта;

* система стимулирования работников.

На основе системы сравнений по факторам были построены квадратные матрицы смежности, в которых вычислялись значения относительных приоритетов по каждому фактору: инновационная деятельность предприятия, планирование ассортимента производимой продукции, формирование ценовой политики, реклама, взаимоотношения с общественностью, система сбыта, система стимулирования работников.

Оценки приоритетов по фактору «взаимоотношения с общественностью» получены в результате анкетирования специалистов предприятия. Приняты следующие обозначения: > (лучше), > (лучше или одинаково), = (одинаково), < (хуже или одинаково), <

Далее решалась задача комплексной оценки уровня маркетинга предприятия. При расчете показателя была определена значимость (вес) рассмотренных частных признаков и решалась задача линейного свертывания частных показателей. Обработка данных производилась по специально разработанным программам.

Далее рассчитывается комплексная оценка уровня маркетинга предприятия -- коэффициент маркетинга, который вносится в таблице 1. Кроме того, в названую таблицу включены показатели, характеризующие предприятие в целом. Данные в таблице будут использованы для проведения регрессионного анализа. Результативным признаком является прибыль. В качестве факторных признаков наряду с коэффициентом маркетинга использованы следующие показатели: объем валовой продукции, стоимость основных фондов, численность работников, коэффициент специализации.

Таблица 1 - Исходные данные для регрессионного анализа


По данным таблицы и на основе факторов с наиболее существенными значениями коэффициентов корреляции были построены регрессионные функции зависимости прибыли от факторов.

Уравнение регрессии в нашем случае примет вид:

О количественном влиянии рассмотренных выше факторов на величину прибыли говорят коэффициенты уравнения регрессии. Они показывают, на сколько тысяч рублей изменяется ее величина при изменении факторного признака на одну единицу. Как следует из уравнения, увеличение коэффициента комплекса маркетинга на одну единицу дает прирост прибыли на 1547,7 тыс. руб. Это говорит о том, что в совершенствовании маркетинговой деятельности кроется огромный потенциал улучшения экономических показателей предприятий.

При исследовании эффективности маркетинга наиболее интересным и самым важным факторным признаком является фактор Х5 -- коэффициент маркетинга. В соответствии с теорией статистики достоинство имеющегося уравнения множественной регрессии является возможность оценивать изолированное влияние каждого фактора, в том числе фактора маркетинга.

Результаты проведенного регрессионного анализа имеют и более широкое применение, чем для расчета параметров уравнения. Критерий отнесения (КЭф,) предприятий к относительно лучшим или относительно худшим основан на относительном показателе результата:

где Y фактi - фактическая величина i-го предприятия, тыс. руб.;

Y расчi -величина прибыли i-го предприятия, полученная расчетным путем по уравнению регрессии

В терминах решаемой задачи величина носит название «коэффициент эффективности». Деятельность предприятия можно признать эффективной в тех случаях, когда величина коэффициента больше единицы. Это означает, что фактическая прибыль больше прибыли, усредненной по выборке.

Фактические и расчетные значения прибыли представлены в табл. 2.

Таблица 2 - Анализ результативного признака в регрессионной модели

Анализ таблицы показывает, что в нашем случае деятельность предприятий 3, 5, 7, 9, 12, 14, 15, 17 за рассматриваемый период можно признать успешной.

Понятие регрессии . Зависимость между переменными величинами x и y может быть описана разными способами. В частности, любую форму связи можно выразить уравнением общего вида , гдеy рассматривается в качестве зависимой переменной, или функции от другой – независимой переменной величины x, называемой аргументом . Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т.д. Изменение функции в зависимости от изменения одного или нескольких аргументов называется регрессией . Все средства, применяемые для описания корреляционных связей, составляет содержание регрессионного анализа .

Для выражения регрессии служат корреляционные уравнения, или уравнения регрессии, эмпирические и теоретически вычисленные ряды регрессии, их графики, называемые линиями регрессии, а также коэффициенты линейной и нелинейной регрессии.

Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение усредненных значений признакаY при изменении значений x i признака X , и, наоборот, показывают изменение средних значений признакаX по измененным значениям y i признака Y . Исключение составляют временные ряды, или ряды динамики, показывающие изменение признаков во времени. Регрессия таких рядов является односторонней.

Различных форм и видов корреляционных связей много. Задача сводится к тому, чтобы в каждом конкретном случае выявить форму связи и выразить ее соответствующим корреляционным уравнением, что позволяет предвидеть возможные изменения одного признака Y на основании известных изменений другого X , связанного с первым корреляционно.

12.1 Линейная регрессия

Уравнение регрессии. Результаты наблюдений, проведенных над тем или иным биологическим объектом по корреляционно связанным признакам x и y , можно изобразить точками на плоскости, построив систему прямоугольных координат. В результате получается некая диаграмма рассеяния, позволяющая судить о форме и тесноте связи между варьирующими признаками. Довольно часто эта связь выглядит в виде прямой или может быть аппроксимирована прямой линией.

Линейная зависимость между переменными x и y описывается уравнением общего вида , гдеa, b, c, d, … – параметры уравнения, определяющие соотношения между аргументами x 1 , x 2 , x 3 , …, x m и функций .

В практике учитывают не все возможные, а лишь некоторые аргументы, в простейшем случае – всего один:

В уравнении линейной регрессии (1) a – свободный член, а параметр b определяет наклон линии регрессии по отношению к осям прямоугольных координат. В аналитической геометрии этот параметр называют угловым коэффициентом , а в биометрии – коэффициентом регрессии . Наглядное представление об этом параметре и о положении линий регрессии Y по X и X по Y в системе прямоугольных координат дает рис.1.

Рис. 1 Линии регрессии Y по X и X поY в системе

прямоугольных координат

Линии регрессии, как показано на рис.1, пересекаются в точке О (,), соответствующей средним арифметическим значениям корреляционно связанных друг с другом признаковY и X . При построении графиков регрессии по оси абсцисс откладывают значения независимой переменной X, а по оси ординат – значения зависимой переменной, или функции Y. Линия АВ, проходящая через точку О (,) соответствует полной (функциональной) зависимости между переменными величинамиY и X , когда коэффициент корреляции . Чем сильнее связь междуY и X , тем ближе линии регрессии к АВ, и, наоборот, чем слабее связь между этими величинами, тем более удаленными оказываются линии регрессии от АВ. При отсутствии связи между признаками линии регрессии оказываются под прямым углом по отношению друг к другу и .

Поскольку показатели регрессии выражают корреляционную связь двусторонне, уравнение регрессии (1) следует записывать так:

По первой формуле определяют усредненные значения при изменении признакаX на единицу меры, по второй – усредненные значения при изменении на единицу меры признакаY .

Коэффициент регрессии. Коэффициент регрессии показывает, насколько в среднем величина одного признака y изменяется при изменении на единицу меры другого, корреляционно связанного с Y признака X . Этот показатель определяют по формуле

Здесь значения s умножают на размеры классовых интервалов λ , если их находили по вариационным рядам или корреляционным таблицам.

Коэффициент регрессии можно вычислить минуя расчет средних квадратичных отклонений s y и s x по формуле

Если же коэффициент корреляции неизвестен, коэффициент регрессии определяют следующим образом:

Связь между коэффициентами регрессии и корреляции. Сравнивая формулы (11.1) (тема 11) и (12.5), видим: в их числителе одна и та же величина , что указывает на наличие связи между этими показателями. Эта связь выражается равенством

Таким образом, коэффициент корреляции равен средней геометрической из коэффициентов b yx и b xy . Формула (6) позволяет, во-первых, по известным значениям коэффициентов регрессии b yx и b xy определять коэффициент регрессии R xy , а во-вторых, проверять правильность расчета этого показателя корреляционной связи R xy между варьирующими признаками X и Y .

Как и коэффициент корреляции, коэффициент регрессии характеризует только линейную связь и сопровождается знаком плюс при положительной и знаком минус при отрицательной связи.

Определение параметров линейной регрессии. Известно, что сумма квадратов отклонений вариант x i от средней есть величина наименьшая, т.е.. Эта теорема составляет основу метода наименьших квадратов. В отношении линейной регрессии [см. формулу (1)] требованию этой теоремы удовлетворяет некоторая система уравнений, называемыхнормальными :

Совместное решение этих уравнений относительно параметров a и b приводит к следующим результатам:

;

;

, откуда и.

Учитывая двусторонний характер связи между переменными Y и X , формулу для определения параметра а следует выразить так:

и . (7)

Параметр b , или коэффициент регрессии, определяют по следующим формулам:

Построение эмпирических рядов регрессии. При наличии большого числа наблюдений регрессионный анализ начинается с построения эмпирических рядов регрессии. Эмпирический ряд регрессии образуется путем вычисления по значениям одного варьирующего признака X средних значений другого, связанного корреляционно сX признака Y . Иными словами, построение эмпирических рядов регрессии сводится к нахождению групповых средних ииз соответствующих значений признаковY и X.

Эмпирический ряд регрессии – это двойной ряд чисел, которые можно изобразить точками на плоскости, а затем, соединив эти точки отрезками прямой, получить эмпирическую линию регрессии. Эмпирические ряды регрессии, особенно их графики, называемые линиями регрессии , дают наглядное представление о форме и тесноте корреляционной зависимости между варьирующими признаками.

Выравнивание эмпирических рядов регрессии. Графики эмпирических рядов регрессии оказываются, как правило, не плавно идущими, а ломаными линиями. Это объясняется тем, что наряду с главными причинами, определяющими общую закономерность в изменчивости коррелируемых признаков, на их величине сказывается влияние многочисленных второстепенных причин, вызывающих случайные колебания узловых точек регрессии. Чтобы выявить основную тенденцию (тренд) сопряженной вариации коррелируемых признаков, нужно заменить ломанные линии на гладкие, плавно идущие линии регрессии. Процесс замены ломанных линий на плавно идущие называют выравниванием эмпирических рядов и линий регрессий .

Графический способ выравнивания. Это наиболее простой способ, не требующий вычислительной работы. Его сущность сводится к следующему. Эмпирический ряд регрессии изображают в виде графика в системе прямоугольных координат. Затем визуально намечаются средние точки регрессии, по которым с помощью линейки или лекала проводят сплошную линию. Недостаток этого способа очевиден: он не исключает влияние индивидуальных свойств исследователя на результаты выравнивания эмпирических линий регрессии. Поэтому в тех случаях, когда необходима более высокая точность при замене ломанных линий регрессии на плавно идущие, используют другие способы выравнивания эмпирических рядов.

Способ скользящей средней. Суть этого способа сводится к последовательному вычислению средних арифметических из двух или трех соседних членов эмпирического ряда. Этот способ особенно удобен в тех случаях, когда эмпирический ряд представлен большим числом членов, так что потеря двух из них – крайних, что неизбежно при этом способе выравнивания, заметно не отразится на его структуре.

Метод наименьших квадратов. Этот способ предложен в начале XIX столетия А.М. Лежандром и независимо от него К. Гауссом. Он позволяет наиболее точно выравнивать эмпирические ряды. Этот метод, как было показано выше, основан на предположении, что сумма квадратов отклонений вариант x i от их средней есть величина минимальная, т.е.. Отсюда и название метода, который применяется не только в экологии, но и в технике. Метод наименьших квадратов объективен и универсален, его применяют в самых различных случаях при отыскании эмпирических уравнений рядов регрессии и определении их параметров.

Требование метода наименьших квадратов заключается в том, что теоретические точки линии регрессии должны быть получены таким образом, чтобы сумма квадратов отклонений от этих точек для эмпирических наблюденийy i была минимальной, т.е.

Вычисляя в соответствии с принципами математического анализа минимум этого выражения и определенным образом преобразуя его, можно получить систему так называемых нормальных уравнений , в которых неизвестными величинами оказываются искомые параметры уравнения регрессии, а известные коэффициенты определяются эмпирическими величинами признаков, обычно суммами их значений и их перекрестных произведений.

Множественная линейная регрессия. Зависимость между несколькими переменными величинами принято выражать уравнением множественной регрессии, которая может быть линейной и нелинейной . В простейшем виде множественная регрессия выражается уравнением с двумя независимыми переменными величинами (x , z ):

где a – свободный член уравнения; b и c – параметры уравнения. Для нахождения параметров уравнения (10) (по способу наименьших квадратов) применяют следующую систему нормальных уравнений:

Ряды динамики. Выравнивание рядов. Изменение признаков во времени образует так называемые временные ряды или ряды динамики . Характерной особенностью таких рядов является то, что в качестве независимой переменной X здесь всегда выступает фактор времени, а зависимой Y – изменяющийся признак. В зависимости от рядов регрессии зависимость между переменными X и Y носит односторонний характер, так как фактор времени не зависит от изменчивости признаков. Несмотря на указанные особенности, ряды динамики можно уподобить рядам регрессии и обрабатывать их одними и теми же методами.

Как и ряды регрессии, эмпирические ряды динамики несут на себе влияние не только основных, но и многочисленных второстепенных (случайных) факторов, затушевывающих ту главную тенденцию в изменчивости признаков, которая на языке статистики называют трендом .

Анализ рядов динамики начинается с выявления формы тренда. Для этого временной ряд изображают в виде линейного графика в системе прямоугольных координат. При этом по оси абсцисс откладывают временные точки (годы, месяцы и другие единицы времени), а по оси ординат – значения зависимой переменной Y. При наличии линейной зависимости между переменными X и Y (линейного тренда) для выравнивания рядов динамики способом наименьших квадратов наиболее подходящим является уравнение регрессии в виде отклонений членов ряда зависимой переменной Y от средней арифметической ряда независимой переменнойX:

Здесь – параметр линейной регрессии.

Числовые характеристики рядов динамики. К числу основных обобщающих числовых характеристик рядов динамики относят среднюю геометрическую и близкую к ней среднюю арифметическуювеличины. Они характеризуют среднюю скорость, с какой изменяется величина зависимой переменной за определенные периоды времени:

Оценкой изменчивости членов ряда динамики служит среднее квадратическое отклонение . При выборе уравнений регрессии для описания рядов динамики учитывают форму тренда, которая может быть линейной (или приведена к линейной) и нелинейной. О правильности выбора уравнения регрессии обычно судят по сходству эмпирически наблюденных и вычисленных значений зависимой переменной. Более точным в решении этой задачи является метод дисперсионного анализа регрессии (тема 12 п.4).

Корреляция рядов динамики. Нередко приходится сопоставлять динамику параллельно идущих временных рядов, связанных друг с другом некоторыми общими условиями, например выяснить связь между производством сельскохозяйственной продукции и ростом поголовья скота за определенный промежуток времени. В таких случаях характеристикой связи между переменными X и Y служит коэффициент корреляции R xy (при наличии линейного тренда).

Известно, что тренд рядов динамики, как правило, затушевывается колебаниями членов ряда зависимой переменной Y. Отсюда возникает задача двоякого рода: измерение зависимости между сопоставляемыми рядами, не исключая тренд, и измерение зависимости между соседними членами одного и того же ряда, исключая тренд. В первом случае показателем тесноты связи между сопоставляемыми рядами динамики служит коэффициент корреляции (если связь линейна), во втором – коэффициент автокорреляции . Эти показатели имеют разные значения, хотя и вычисляются по одним и тем же формулам (см. тему 11).

Нетрудно заметить, что на значении коэффициента автокорреляции сказывается изменчивость членов ряда зависимой переменной: чем меньше члены ряда отклоняются от тренда, тем выше коэффициент автокорреляции, и наоборот.


Самое обсуждаемое
Креационная теория сотворения мира Кто сотворил мир Креационная теория сотворения мира Кто сотворил мир
Владимирский базовый медицинский колледж Владимирский базовый медицинский колледж
Явление которое происходит только в мейозе Явление которое происходит только в мейозе


top