Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных. Корреляционно-регрессионный анализ в Excel: инструкция выполнения Метод регрессии позволяет установить

Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных. Корреляционно-регрессионный анализ в Excel: инструкция выполнения Метод регрессии позволяет установить

Регрессионный анализ - это метод установления аналитического выражения стохастической зависимости между исследуемыми признаками. Уравнение регрессии показывает, как в среднем изменяется у при изменении любого из x i , и имеет вид:

где у - зависимая переменная (она всегда одна);

х i - независимые переменные (факторы) (их может быть несколько).

Если независимая переменная одна - это простой регрессионный анализ. Если же их несколько (п 2), то такой анализ называется многофакторным.

В ходе регрессионного анализа решаются две основные задачи:

    построение уравнения регрессии, т.е. нахождение вида зависимости между результатным показателем и независимыми факторами x 1 , x 2 , …, x n .

    оценка значимости полученного уравнения, т.е. определение того, насколько выбранные факторные признаки объясняют вариацию признака у.

Применяется регрессионный анализ главным образом для планирования, а также для разработки нормативной базы.

В отличие от корреляционного анализа, который только отвечает на вопрос, существует ли связь между анализируемыми признаками, регрессионный анализ дает и ее формализованное выражение. Кроме того, если корреляционный анализ изучает любую взаимосвязь факторов, то регрессионный - одностороннюю зависимость, т.е. связь, показывающую, каким образом изменение факторных признаков влияет на признак результативный.

Регрессионный анализ - один из наиболее разработанных методов математической статистики. Строго говоря, для реализации регрессионного анализа необходимо выполнение ряда специальных требований (в частности, x l ,x 2 ,...,x n ; y должны быть независимыми, нормально распределенными случайными величинами с постоянными дисперсиями). В реальной жизни строгое соответствие требованиям регрессионного и корреляционного анализа встречается очень редко, однако оба эти метода весьма распространены в экономических исследованиях. Зависимости в экономике могут быть не только прямыми, но и обратными и нелинейными. Регрессионная модель может быть построена при наличии любой зависимости, однако в многофакторном анализе используют только линейные модели вида:

Построение уравнения регрессии осуществляется, как правило, методом наименьших квадратов, суть которого состоит в минимизации суммы квадратов отклонений фактических значений результатного признака от его расчетных значений, т.е.:

где т - число наблюдений;

j = a + b 1 x 1 j + b 2 x 2 j + ... + b n х n j - расчетное значение результатного фактора.

Коэффициенты регрессии рекомендуется определять с помощью аналитических пакетов для персонального компьютера или специального финансового калькулятора. В наиболее простом случае коэффициенты регрессии однофакторного линейного уравнения регрессии вида y = а + bх можно найти по формулам:

Кластерный анализ

Кластерный анализ - один из методов многомерного анализа, предназначенный для группировки (кластеризации) совокупности, элементы которой характеризуются многими признаками. Значения каждого из признаков служат координатами каждой единицы изучаемой совокупности в многомерном пространстве признаков. Каждое наблюдение, характеризующееся значениями нескольких показателей, можно представить как точку в пространстве этих показателей, значения которых рассматриваются как координаты в многомерном пространстве. Расстояние между точками р и q с k координатами определяется как:

Основным критерием кластеризации является то, что различия между кластерами должны быть более существенны, чем между наблюдениями, отнесенными к одному кластеру, т.е. в многомерном пространстве должно соблюдаться неравенство:

где r 1, 2 - расстояние между кластерами 1 и 2.

Так же как и процедуры регрессионного анализа, процедура кластеризации достаточно трудоемка, ее целесообразно выполнять на компьютере.

Основная цель регрессионного анализа состоит в определении аналитической формы связи, в которой изменение результативного признака обусловлено влиянием одного или нескольких факторных признаков, а множество всех прочих факторов, также оказывающих влияние на результативный признак, принимается за постоянные и средние значения.
Задачи регрессионного анализа :
а) Установление формы зависимости. Относительно характера и формы зависимости между явлениями, различают положительную линейную и нелинейную и отрицательную линейную и нелинейную регрессию.
б) Определение функции регрессии в виде математического уравнения того или иного типа и установление влияния объясняющих переменных на зависимую переменную.
в) Оценка неизвестных значений зависимой переменной. С помощью функции регрессии можно воспроизвести значения зависимой переменной внутри интервала заданных значений объясняющих переменных (т. е. решить задачу интерполяции) или оценить течение процесса вне заданного интервала (т. е. решить задачу экстраполяции). Результат представляет собой оценку значения зависимой переменной.

Парная регрессия - уравнение связи двух переменных у и х: y=f(x), где y - зависимая переменная (результативный признак); x - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.
Линейная регрессия: y = a + bx + ε
Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
Регрессии, нелинейные по объясняющим переменным:

Регрессии, нелинейные по оцениваемым параметрам:

  • степенная y=a·x b ·ε
  • показательная y=a·b x ·ε
  • экспоненциальная y=e a+b·x ·ε
Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, Используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических y x минимальна, т.е.
.
Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции r xy для линейной регрессии (-1≤r xy ≤1):

и индекс корреляции p xy - для нелинейной регрессии (0≤p xy ≤1):

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации .
Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
.
Допустимый предел значений A - не более 8-10%.
Средний коэффициент эластичности Э показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:
.

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
∑(y-y )²=∑(y x -y )²+∑(y-y x)²
где ∑(y-y )² - общая сумма квадратов отклонений;
∑(y x -y )² - сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
∑(y-y x)² - остаточная сумма квадратов отклонений.
Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2:

Коэффициент детерминации - квадрат коэффициента или индекса корреляции.

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического F факт и критического (табличного) F табл значений F-критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
,
где n - число единиц совокупности; m - число параметров при переменных х.
F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
Если F табл < F факт, то Н о - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Н о не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н о о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
; ; .
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:



Сравнивая фактическое и критическое (табличное) значения t-статистики - t табл и t факт - принимаем или отвергаем гипотезу Н о.
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если t табл < t факт то H o отклоняется, т.е. a , b и r xy не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт то гипотеза Н о не отклоняется и признается случайная природа формирования а, b или r xy .
Для расчета доверительного интервала определяем предельную ошибку D для каждого показателя:
Δ a =t табл ·m a , Δ b =t табл ·m b .
Формулы для расчета доверительных интервалов имеют следующий вид:
γ a =a±Δ a ; γ a =a-Δ a ; γ a =a+Δ a
γ b =b±Δ b ; γ b =b-Δ b ; γ b =b+Δ b
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение y p определяется путем подстановки в уравнение регрессии y x =a+b·x соответствующего (прогнозного) значения x p . Вычисляется средняя стандартная ошибка прогноза m y x:
,
где
и строится доверительный интервал прогноза:
γ y x =y p ±Δ y p ; γ y x min=y p -Δ y p ; γ y x max=y p +Δ y p
где Δ y x =t табл ·m y x .

Пример решения

Задача №1 . По семи территориям Уральского района За 199Х г. известны значения двух признаков.
Таблица 1.

Требуется: 1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной (предварительно нужно произвести процедуру линеаризации переменных, путем логарифмирования обеих частей);
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации A и F-критерий Фишера.

Решение (Вариант №1)

Для расчета параметров a и b линейной регрессии y=a+b·x (расчет можно проводить с помощью калькулятора).
решаем систему нормальных уравнений относительно а и b:
По исходным данным рассчитываем ∑y, ∑x, ∑y·x, ∑x², ∑y²:
y x yx x 2 y 2 y x y-y x A i
l 68,8 45,1 3102,88 2034,01 4733,44 61,3 7,5 10,9
2 61,2 59,0 3610,80 3481,00 3745,44 56,5 4,7 7,7
3 59,9 57,2 3426,28 3271,84 3588,01 57,1 2,8 4,7
4 56,7 61,8 3504,06 3819,24 3214,89 55,5 1,2 2,1
5 55,0 58,8 3234,00 3457,44 3025,00 56,5 -1,5 2,7
6 54,3 47,2 2562,96 2227,84 2948,49 60,5 -6,2 11,4
7 49,3 55,2 2721,36 3047,04 2430,49 57,8 -8,5 17,2
Итого 405,2 384,3 22162,34 21338,41 23685,76 405,2 0,0 56,7
Ср. знач. (Итого/n) 57,89
y
54,90
x
3166,05
x·y
3048,34
3383,68
X X 8,1
s 5,74 5,86 X X X X X X
s 2 32,92 34,34 X X X X X X


a=y -b·x = 57.89+0.35·54.9 ≈ 76.88

Уравнение регрессии: у = 76,88 - 0,35х. С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.
Рассчитаем линейный коэффициент парной корреляции:

Связь умеренная, обратная.
Определим коэффициент детерминации: r² xy =(-0.35)=0.127
Вариация результата на 12,7% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х , определим теоретические (расчетные) значения y x . Найдем величину средней ошибки аппроксимации A :

В среднем расчетные значения отклоняются от фактических на 8,1%.
Рассчитаем F-критерий:

Полученное значение указывает на необходимость принять гипотезу Н 0 о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
1б. Построению степенной модели y=a·x b предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:
lg y=lg a + b·lg x
Y=C+b·Y
где Y=lg(y), X=lg(x), C=lg(a).

Для расчетов используем данные табл. 1.3.
Таблица 1.3

Y X YX Y 2 X 2 y x y-y x (y-y x)² A i
1 1,8376 1,6542 3,0398 3,3768 2,7364 61,0 7,8 60,8 11,3
2 1,7868 1,7709 3,1642 3,1927 3,1361 56,3 4,9 24,0 8,0
3 1,7774 1,7574 3,1236 3,1592 3,0885 56,8 3,1 9,6 5,2
4 1,7536 1,7910 3,1407 3,0751 3,2077 55,5 1,2 1,4 2,1
5 1,7404 1,7694 3,0795 3,0290 3,1308 56,3 -1,3 1,7 2,4
6 1,7348 1,6739 2,9039 3,0095 2,8019 60,2 -5,9 34,8 10,9
7 1,6928 1,7419 2,9487 2,8656 3,0342 57,4 -8,1 65,6 16,4
Итого 12,3234 12,1587 21,4003 21,7078 21,1355 403,5 1,7 197,9 56,3
Среднее значение 1,7605 1,7370 3,0572 3,1011 3,0194 X X 28,27 8,0
σ 0,0425 0,0484 X X X X X X X
σ 2 0,0018 0,0023 X X X X X X X

Рассчитаем С иb:

C=Y -b·X = 1.7605+0.298·1.7370 = 2.278126
Получим линейное уравнение: Y=2.278-0.298·X
Выполнив его потенцирование, получим: y=10 2.278 ·x -0.298
Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата. По ним рассчитаем показатели: тесноты связи - индекс корреляции p xy и среднюю ошибку аппроксимации A .

Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

. Построению уравнения показательной кривой y=a·b x предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:
lg y=lg a + x·lg b
Y=C+B·x
Для расчетов используем данные таблицы.

Y x Yx Y 2 x 2 y x y-y x (y-y x)² A i
1 1,8376 45,1 82,8758 3,3768 2034,01 60,7 8,1 65,61 11,8
2 1,7868 59,0 105,4212 3,1927 3481,00 56,4 4,8 23,04 7,8
3 1,7774 57,2 101,6673 3,1592 3271,84 56,9 3,0 9,00 5,0
4 1,7536 61,8 108,3725 3,0751 3819,24 55,5 1,2 1,44 2,1
5 1,7404 58,8 102,3355 3,0290 3457,44 56,4 -1,4 1,96 2,5
6 1,7348 47,2 81,8826 3,0095 2227,84 60,0 -5,7 32,49 10,5
7 1,6928 55,2 93,4426 2,8656 3047,04 57,5 -8,2 67,24 16,6
Итого 12,3234 384,3 675,9974 21,7078 21338,41 403,4 -1,8 200,78 56,3
Ср. зн. 1,7605 54,9 96,5711 3,1011 3048,34 X X 28,68 8,0
σ 0,0425 5,86 X X X X X X X
σ 2 0,0018 34,339 X X X X X X X

Значения параметров регрессии A и В составили:

A=Y -B·x = 1.7605+0.0023·54.9 = 1.887
Получено линейное уравнение: Y=1.887-0.0023x. Произведем потенцирование полученного уравнения и запишем его в обычной форме:
y x =10 1.887 ·10 -0.0023x = 77.1·0.9947 x
Тесноту связи оценим через индекс корреляции p xy:

3588,01 56,9 3,0 9,00 5,0 4 56,7 0,0162 0,9175 0,000262 3214,89 55,5 1,2 1,44 2,1 5 55 0,0170 0,9354 0,000289 3025,00 56,4 -1,4 1,96 2,5 6 54,3 0,0212 1,1504 0,000449 2948,49 60,8 -6,5 42,25 12,0 7 49,3 0,0181 0,8931 0,000328 2430,49 57,5 -8,2 67,24 16,6 Итого 405,2 0,1291 7,5064 0,002413 23685,76 405,2 0,0 194,90 56,5 Среднее значение 57,9 0,0184 1,0723 0,000345 3383,68 X X 27,84 8,1 σ 5,74 0,002145 X X X X X X X σ 2 32,9476 0,000005 X X

Регрессионный анализ лежит в основе создания большинства эконометрических моделей, к числу которых следует отнести и модели оценки стоимости. Для построения моделей оценки этот метод можно использовать, если количество аналогов (сопоставимых объектов) и количество факторов стоимости (элементов сравнения) соотносятся между собой следующим образом: п > (5 -г-10) х к, т.е. аналогов должно быть в 5-10 раз больше, чем факторов стоимости. Это же требование к соотношению количества данных и количества факторов распространяется и на другие задачи: установление связи между стоимостью и потребительскими параметрами объекта; обоснование порядка расчета корректирующих индексов; выяснение трендов цен; установление связи между износом и изменениями влияющих факторов; получение зависимостей для расчета нормативов затрат и т.п. Выполнение данного требования необходимо для того, чтобы уменьшить вероятность работы с выборкой данных, которая не удовлетворяет требованию нормальности распределения случайных величин.

Регрессионная связь отражает лишь усредненную тенденцию изменения результирующей переменной, например, стоимости, от изменения одной или нескольких факторных переменных, например, местоположения, количества комнат, площади, этажа и т.п. В этом заключается отличие регрессионной связи от функциональной, при которой значение результирующей переменной строго определено при заданном значении факторных переменных.

Наличие регрессионной связи / между результирующей у и факторными переменными х р ..., х к (факторами) свидетельствует о том, что эта связь определяется не только влиянием отобранных факторных переменных, но и влиянием переменных, одни из которых вообще неизвестны, другие не поддаются оценке и учету:

Влияние неучтенных переменных обозначается вторым слагаемым данного уравнения ?, которое называют ошибкой аппроксимации.

Различают следующие типы регрессионных зависимостей:

  • ? парная регрессия - связь между двумя переменными (результирующей и факторной);
  • ? множественная регрессия - зависимость одной результирующей переменной и двух или более факторных переменных, включенных в исследование.

Основная задача регрессионного анализа - количественное определение тесноты связи между переменными (при парной регрессии) и множеством переменных (при множественной регрессии). Теснота связи количественно выражается коэффициентом корреляции.

Применение регрессионного анализа позволяет установить закономерность влияния основных факторов (гедонистических характеристик ) на изучаемый показатель как в их совокупности, так и каждого из них в отдельности. С помощью регрессионного анализа, как метода математической статистики, удается, во-первых, найти и описать форму аналитической зависимости результирующей (искомой) переменной от факторных и, во-вторых, оценить тесноту этой зависимости.

Благодаря решению первой задачи получают математическую регрессионную модель, с помощью которой затем рассчитывают искомый показатель при заданных значениях факторов. Решение второй задачи позволяет установить надежность рассчитанного результата.

Таким образом, регрессионный анализ можно определить как совокупность формальных (математических) процедур, предназначенных для измерения тесноты, направления и аналитического выражения формы связи между результирующей и факторными переменными, т.е. на выходе такого анализа должна быть структурно и количественно определенная статистическая модель вида:

где у - среднее значение результирующей переменной (искомого показателя, например, стоимости, аренды, ставки капитализации) по п ее наблюдениям; х - значение факторной переменной (/-й фактор стоимости); к - количество факторных переменных.

Функция f(x l ,...,x lc), описывающая зависимость результирующей переменной от факторных, называется уравнением (функцией) регрессии. Термин «регрессия» (regression (лат.) - отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода, и в настоящее время не отражает всей сущности метода, но продолжает применяться.

Регрессионный анализ в общем случае включает следующие этапы:

  • ? формирование выборки однородных объектов и сбор исходной информации об этих объектах;
  • ? отбор основных факторов, влияющих на результирующую переменную;
  • ? проверка выборки на нормальность с использованием х 2 или биноминального критерия;
  • ? принятие гипотезы о форме связи;
  • ? математическую обработку данных;
  • ? получение регрессионной модели;
  • ? оценку ее статистических показателей;
  • ? поверочные расчеты с помощью регрессионной модели;
  • ? анализ результатов.

Указанная последовательность операций имеет место при исследовании как парной связи между факторной переменной и одной результирующей, так и множественной связи между результирующей переменной и несколькими факторными.

Применение регрессионного анализа предъявляет к исходной информации определенные требования:

  • ? статистическая выборка объектов должна быть однородной в функциональном и конструктивно-технологическом отношениях;
  • ? достаточно многочисленной;
  • ? исследуемый стоимостной показатель - результирующая переменная (цена, себестоимость, затраты) - должен быть приведен к одним условиям его исчисления у всех объектов в выборке;
  • ? факторные переменные должны быть измерены достаточно точно;
  • ? факторные переменные должны быть независимы либо минимально зависимы.

Требования однородности и полноты выборки находятся в противоречии: чем жестче ведут отбор объектов по их однородности, тем меньше получают выборку, и, наоборот, для укрупнения выборки приходится включать в нее не очень схожие между собой объекты.

После того как собраны данные по группе однородных объектов, проводят их анализ для установления формы связи между результирующей и факторными переменными в виде теоретической линии регрессии. Процесс нахождения теоретической линии регрессии заключается в обоснованном выборе аппроксимирующей кривой и расчете коэффициентов ее уравнения. Линия регрессии представляет собой плавную кривую (в частном случае прямую), описывающую с помощью математической функции общую тенденцию исследуемой зависимости и сглаживающую незакономерные, случайные выбросы от влияния побочных факторов.

Для отображения парных регрессионных зависимостей в задачах по оценке чаще всего используют следующие функции: линейную - у - а 0 + арс + с степенную - у - aj&i + с показательную - у - линейно-показательную - у - а 0 + ар* + с. Здесь - е ошибка аппроксимации, обусловленная действием неучтенных случайных факторов.

В этих функциях у - результирующая переменная; х - факторная переменная (фактор); а 0 , а р а 2 - параметры регрессионной модели, коэффициенты регрессии.

Линейно-показательная модель относится к классу так называемых гибридных моделей вида:

где

где х (i = 1, /) - значения факторов;

b t (i = 0, /) - коэффициенты регрессионного уравнения.

В данном уравнении составляющие А, В и Z соответствуют стоимости отдельных составляющих оцениваемого актива, например, стоимости земельного участка и стоимости улучшений, а параметр Q является общим. Он предназначен для корректировки стоимости всех составляющих оцениваемого актива на общий фактор влияния, например, местоположение.

Значения факторов, находящихся в степени соответствующих коэффициентов, представляют собой бинарные переменные (0 или 1). Факторы, находящиеся в основании степени, - дискретные или непрерывные переменные.

Факторы, связанные с коэффициентами знаком умножения, также являются непрерывными или дискретными.

Спецификация осуществляется, как правило, с использованием эмпирического подхода и включает два этапа:

  • ? нанесение на график точек регрессионного поля;
  • ? графический (визуальный) анализ вида возможной аппроксимирующей кривой.

Тип кривой регрессии не всегда можно выбрать сразу. Для его определения сначала наносят на график точки регрессионного поля по исходным данным. Затем визуально проводят линию по положению точек, стремясь выяснить качественную закономерность связи: равномерный рост или равномерное снижение, рост (снижение) с возрастанием (убыванием) темпа динамики, плавное приближение к некоторому уровню.

Этот эмпирический подход дополняют логическим анализом, отталкиваясь от уже известных представлений об экономической и физической природе исследуемых факторов и их взаимовлияния.

Например, известно, что зависимости результирующих переменных - экономических показателей (цены, аренды) от ряда факторных переменных - ценообразующих факторов (расстояния от центра поселения, площади и др.) имеют нелинейный характер, и достаточно строго их можно описать степенной, экспоненциальной или квадратичной функциями. Но при небольших диапазонах изменения факторов приемлемые результаты можно получить и с помощью линейной функции.

Если все же невозможно сразу сделать уверенный выбор какой- либо одной функции, то отбирают две-три функции, рассчитывают их параметры и далее, используя соответствующие критерии тесноты связи, окончательно выбирают функцию.

В теории регрессионный процесс нахождения формы кривой называется спецификацией модели, а ее коэффициентов - калибровкой модели.

Если обнаружено, что результирующая переменная у зависит от нескольких факторных переменных (факторов) х { , х 2 , ..., х к, то прибегают к построению множественной регрессионной модели. Обычно при этом используют три формы множественной связи: линейную - у - а 0 + а х х х + а^х 2 + ... + а к х к, показательную - у - а 0 a *i а х т- а х ь, степенную - у - а 0 х х ix 2 a 2. .х^или их комбинации.

Показательная и степенная функции более универсальны, так как аппроксимируют нелинейные связи, каковыми и является большинство исследуемых в оценке зависимостей. Кроме того, они могут быть применены при оценке объектов и в методе статистического моделирования при массовой оценке, и в методе прямого сравнения в индивидуальной оценке при установлении корректирующих коэффициентов.

На этапе калибровки параметры регрессионной модели рассчитывают методом наименьших квадратов, суть которого состоит в том, что сумма квадратов отклонений вычисленных значений результирующей переменной у ., т.е. рассчитанных по выбранному уравнению связи, от фактических значений должна быть минимальной:

Значения j) (. и у. известны, поэтому Q является функцией только коэффициентов уравнения. Для отыскания минимума S нужно взять частные производные Q по коэффициентам уравнения и приравнять их к нулю:

В результате получаем систему нормальных уравнений, число которых равно числу определяемых коэффициентов искомого уравнения регрессии.

Положим, нужно найти коэффициенты линейного уравнения у - а 0 + арс. Сумма квадратов отклонений имеет вид:

/=1

Дифференцируют функцию Q по неизвестным коэффициентам а 0 и и приравнивают частные производные к нулю:

После преобразований получают:

где п - количество исходных фактических значений у их (количество аналогов).

Приведенный порядок расчета коэффициентов регрессионного уравнения применим и для нелинейных зависимостей, если эти зависимости можно линеаризовать, т.е. привести к линейной форме с помощью замены переменных. Степенная и показательная функции после логарифмирования и соответствующей замены переменных приобретают линейную форму. Например, степенная функция после логарифмирования приобретает вид: In у = 1пя 0 +а х 1пх. После замены переменных Y- In у, Л 0 - In а № X- In х получаем линейную функцию

Y=A 0 + cijX, коэффициенты которой находят описанным выше способом.

Метод наименьших квадратов применяют и для расчета коэффициентов множественной регрессионной модели. Так, система нормальных уравнений для расчета линейной функции с двумя переменными Xj и х 2 после ряда преобразований имеет следующий вид:

Обычно данную систему уравнений решают, используя методы линейной алгебры. Множественную степенную функцию приводят к линейной форме путем логарифмирования и замены переменных таким же образом, как и парную степенную функцию.

При использовании гибридных моделей коэффициенты множественной регрессии находятся с использованием численных процедур метода последовательных приближений.

Чтобы сделать окончательный выбор из нескольких регрессионных уравнений, необходимо проверить каждое уравнение на тесноту связи, которая измеряется коэффициентом корреляции, дисперсией и коэффициентом вариации. Для оценки можно использовать также критерии Стьюдента и Фишера. Чем большую тесноту связи обнаруживает кривая, тем она более предпочтительна при прочих равных условиях.

Если решается задача такого класса, когда надо установить зависимость стоимостного показателя от факторов стоимости, то понятно стремление учесть как можно больше влияющих факторов и построить тем самым более точную множественную регрессионную модель. Однако расширению числа факторов препятствуют два объективных ограничения. Во-первых, для построения множественной регрессионной модели требуется значительно более объемная выборка объектов, чем для построения парной модели. Принято считать, что количество объектов в выборке должно превышать количество п факторов, по крайней мере, в 5-10 раз. Отсюда следует, что для построения модели с тремя влияющими факторами надо собрать выборку примерно из 20 объектов с разным набором значений факторов. Во-вторых, отбираемые для модели факторы в своем влиянии на стоимостный показатель должны быть достаточно независимы друг от друга. Это обеспечить непросто, поскольку выборка обычно объединяет объекты, относящиеся к одному семейству, у которых имеет место закономерное изменение многих факторов от объекта к объекту.

Качество регрессионных моделей, как правило, проверяют с использованием следующих статистических показателей.

Стандартное отклонение ошибки уравнения регрессии (ошибка оценки):

где п - объем выборки (количество аналогов);

к - количество факторов (факторов стоимости);

Ошибка, необъясняемая регрессионным уравнением (рис. 3.2);

у. - фактическое значение результирующей переменной (например, стоимости); y t - расчетное значение результирующей переменной.

Этот показатель также называют стандартной ошибкой оценки {СКО ошибки ). На рисунке точками обозначены конкретные значения выборки, символом обозначена линия среднего значений выборки, наклонная штрихпунктирная линия - это линия регрессии.


Рис. 3.2.

Стандартное отклонение ошибки оценки измеряет величину отклонения фактических значений у от соответствующих расчетных значений у { , полученных с помощью регрессионной модели. Если выборка, на которой построена модель, подчинена нормальному закону распределения, то можно утверждать, что 68% реальных значений у находятся в диапазоне у ± & е от линии регрессии, а 95% - в диапазоне у ± 2d e . Этот показатель удобен тем, что единицы измерения сг? совпадают с единицами измерения у ,. В этой связи его можно использовать для указания точности получаемого в процессе оценки результата. Например, в сертификате стоимости можно указать, что полученное с использованием регрессионной модели значение рыночной стоимости V с вероятностью 95% находится в диапазоне от (V -2d,.) до + 2d s).

Коэффициент вариации результирующей переменной:

где у - среднее значение результирующей переменной (рис. 3.2).

В регрессионном анализе коэффициент вариации var представляет собой стандартное отклонение результата, выраженное в виде процентного отношения к среднему значению результирующей переменной. Коэффициент вариации может служить критерием прогнозных качеств полученной регрессионной модели: чем меньше величина var , тем более высокими являются прогнозные качества модели. Использование коэффициента вариации предпочтительнее показателя & е, так как он является относительным показателем. При практическом использовании данного показателя можно порекомендовать не применять модель, коэффициент вариации которой превышает 33%, так как в этом случае нельзя говорить о том, что данные выборки подчинены нормальному закону распределения.

Коэффициент детерминации (квадрат коэффициента множественной корреляции):

Данный показатель используется для анализа общего качества полученной регрессионной модели. Он указывает, какой процент вариации результирующей переменной объясняется влиянием всех включенных в модель факторных переменных. Коэффициент детерминации всегда лежит в интервале от нуля до единицы. Чем ближе значение коэффициента детерминации к единице, тем лучше модель описывает исходный ряд данных. Коэффициент детерминации можно представить иначе:

Здесь- ошибка, объясняемая регрессионной моделью,

а - ошибка, необъясняемая

регрессионной моделью. С экономической точки зрения данный критерий позволяет судить о том, какой процент вариации цен объясняется регрессионным уравнением.

Точную границу приемлемости показателя R 2 для всех случаев указать невозможно. Нужно принимать во внимание и объем выборки, и содержательную интерпретацию уравнения. Как правило, при исследовании данных об однотипных объектах, полученных примерно в один и тот же момент времени величина R 2 не превышает уровня 0,6-0,7. Если все ошибки прогнозирования равны нулю, т.е. когда связь между результирующей и факторными переменными является функциональной, то R 2 =1.

Скорректированный коэффициент детерминации:

Необходимость введения скорректированного коэффициента детерминации объясняется тем, что при увеличении числа факторов к обычный коэффициент детерминации практически всегда увеличивается, но уменьшается число степеней свободы (п - к - 1). Введенная корректировка всегда уменьшает значение R 2 , поскольку (п - 1) > {п- к - 1). В результате величина R 2 CKOf) даже может стать отрицательной. Это означает, что величина R 2 была близка к нулю до корректировки и объясняемая с помощью уравнения регрессии доля дисперсии переменной у очень мала.

Из двух вариантов регрессионных моделей, которые различаются величиной скорректированного коэффициента детерминации, но имеют одинаково хорошие другие критерии качества, предпочтительнее вариант с большим значением скорректированного коэффициента детерминации. Корректировка коэффициента детерминации не производится, если (п - к): к> 20.

Коэффициент Фишера:

Данный критерий используется для оценки значимости коэффициента детерминации. Остаточная сумма квадратов представляет собой показатель ошибки предсказания с помощью регрессии известных значений стоимости у.. Ее сравнение с регрессионной суммой квадратов показывает, во сколько раз регрессионная зависимость предсказывает результат лучше, чем среднее у . Существует таблица критических значений F R коэффициента Фишера, зависящих от числа степеней свободы числителя - к , знаменателя v 2 = п - к - 1 и уровня значимости а. Если вычисленное значение критерия Фишера F R больше табличного значения, то гипотеза о незначимости коэффициента детерминации, т.е. о несоответствии заложенных в уравнении регрессии связей реально существующим, с вероятностью р = 1 - а отвергается.

Средняя ошибка аппроксимации (среднее процентное отклонение) вычисляется как средняя относительная разность, выраженная в процентах, между фактическими и расчетными значениями результирующей переменной:

Чем меньше значение данного показателя, тем лучше прогнозные качества модели. При значении данного показателя не выше 7% говорят о высокой точности модели. Если 8 > 15%, говорят о неудовлетворительной точности модели.

Стандартная ошибка коэффициента регрессии:

где (/I) -1 .- диагональный элемент матрицы {Х Г Х)~ 1 к - количество факторов;

X - матрица значений факторных переменных:

X 7 - транспонированная матрица значений факторных переменных;

(ЖЛ) _| - матрица, обратная матрице.

Чем меньше эти показатели для каждого коэффициента регрессии, тем надежнее оценка соответствующего коэффициента регрессии.

Критерий Стьюдента (t-статистика):

Этот критерий позволяет измерить степень надежности (существенности) связи, обусловленной данным коэффициентом регрессии. Если вычисленное значение t . больше табличного значения

t av , где v - п - к - 1 - число степеней свободы, то гипотеза о том, что данный коэффициент является статистически незначимым, отвергается с вероятностью (100 - а)%. Существуют специальные таблицы /-распределения, позволяющие по заданному уровню значимости а и числу степеней свободы v определять критическое значение критерия. Наиболее часто употребляемое значение а равно 5%.

Мультиколлинеарность , т.е. эффект взаимных связей между факторными переменными, приводит к необходимости довольствоваться ограниченным их числом. Если это не учесть, то можно в итоге получить нелогичную регрессионную модель. Чтобы избежать негативного эффекта мультиколлинеарности, до построения множественной регрессионной модели рассчитываются коэффициенты парной корреляции r xjxj между отобранными переменными х. и х

Здесь XjX; - среднее значение произведения двух факторных переменных;

XjXj - произведение средних значений двух факторных переменных;

Оценка дисперсии факторной переменной х..

Считается, что две переменные регрессионно связаны между собой (т.е. коллинеарные), если коэффициент их парной корреляции по абсолютной величине строго больше 0,8. В этом случае какую-либо из этих переменных надо исключить из рассмотрения.

С целью расширения возможностей экономического анализа получаемых регрессионных моделей используются средние коэффициенты эластичности, определяемые по формуле:

где Xj - среднее значение соответствующей факторной переменной;

у - среднее значение результирующей переменной; a i - коэффициент регрессии при соответствующей факторной переменной.

Коэффициент эластичности показывает, на сколько процентов в среднем изменится значение результирующей переменной при изменении факторной переменной на 1 %, т.е. как реагирует результирующая переменная на изменение факторной переменной. Например, как реагирует цена кв. м площади квартиры на удаление от центра города.

Полезным с точки зрения анализа значимости того или иного коэффициента регрессии является оценка частного коэффициента детерминации:

Здесь - оценка дисперсии результирующей

переменной. Данный коэффициент показывает, на сколько процентов вариация результирующей переменной объясняется вариацией /-й факторной переменной, входящей в уравнение регрессии.

  • Под гедонистическими характеристиками понимаются характеристики объекта, отражающие его полезные (ценные) с точки зрения покупателей и продавцов свойства.

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них - уравнение регрессии - рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х - независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая - зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии - это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х 1 , х 2 ...х с)+E. В данной ситуации у выступает зависимой переменной, а х - объясняющей. Переменная Е - стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная - это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е - стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный - о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 - тем сильнее связь между параметрами, чем ближе к 0 - тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого - вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель - свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х - нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y - тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x 1 ,x 2 ,…,x m)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а 0 + a 1 х 1 + а 2 х 2 ,+ ... + a m x m . При этом а2, a m , считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах 1 b1 х 2 b2 ...x m bm . В данном случае показатели b 1 , b 2 ..... b m - называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям - система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий - отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

Современная политическая наука исходит из положения о взаимосвязи всех явлений и процессов в обществе. Невозможно понимание событий и процессов, прогнозирование и управление явлениями политической жизни без изучения связей и зависимостей, существующих в политической сфере жизнедеятельности общества. Одна из наиболее распространенных задач политического исследования состоит в изучении связи между некоторыми наблюдаемыми переменными. Помогает решить эту задачу целый класс статистических приемов анализа, объединенных общим названием «регрессионный анализ» (или, как его еще называют, «корреляционно-регрессионный анализ»). Однако если корреляционный анализ позволяет оценить силу связи между двумя переменными, то с помощью регрессионного анализа можно определить вид этой связи, прогнозировать зависимость значения какой-либо переменной от значения другой переменной.

Для начала вспомним, что такое корреляция. Корреляционным называют важнейший частный случай статистической связи, состоящий в том, что равным значениям одной переменной соответствуют различные средние значения другой. С изменением значения признака х закономерным образом изменяется среднее значение признака у, в то время как в каждом отдельном случае значение признака у (с различными вероятностями) может принимать множество различных значений.

Появление в статистике термина «корреляция» (а политология привлекает для решения своих задач достижения статистики, которая, таким образом, является смежной политологии дисциплиной) связано с именем английского биолога и статистика Френсиса Галь- тона, предложившего в XIX в. теоретические основы корреляционно- регрессионного анализа. Термин «корреляция» в науке был известен и ранее. В частности, в палеонтологии еще в XVIII в. его применил французский ученый Жорж Кювье. Он ввел так называемый закон корреляции, при помощи которого по найденным в ходе раскопок останкам животных можно было восстановить их облик.

Известна история, связанная с именем этого ученого и его законом корреляции. Так, в дни университетского праздника студенты, решившие подшутить над известным профессором, натянули на одного студента козлиную шкуру с рогами и копытами. Тот залез в окно спальни Кювье и закричал: «Я тебя съем». Профессор проснулся, посмотрел на силуэт и ответил: «Если у тебя есть рога и копыта, то ты - травоядное животное и съесть меня не можешь. А за незнание закона корреляции получишь двойку». Повернулся на другой бок и уснул. Шутка шуткой, но на этом примере мы наблюдаем частный случай применения множественного корреляционно-регрессионного анализа. Здесь профессор, исходя из знания значений двух наблюдаемых признаков (наличие рогов и копыт), на основании закона корреляции вывел среднее значение третьего признака (класс, к которому относится данное животное - травоядное). В данном случае речь не идет о конкретном значении этой переменной (т.е. данное животное могло принимать различные значения по номинальной шкале - это мог быть и козел, и баран, и бык...).

Теперь перейдем к термину «регрессия». Собственно говоря, он не связан со смыслом тех статистических задач, которые решаются при помощи этого метода. Объяснение термину можно дать только исходя из знания истории развития методов изучения связей между признаками. Одним из первых примеров исследований такого рода была работа статистиков Ф. Гальтона и К. Пирсона, пытавшихся обнаружить закономерность между ростом отцов и их детей по двум наблюдаемым признакам (где X- рост отцов и У- рост детей). В ходе своего исследования они подтвердили начальную гипотезу о том, что в среднем у высоких отцов вырастают в среднем высокие дети. Этот же принцип действует в отношении низких отцов и детей. Однако если бы ученые на этом остановились, то их труды никогда не упоминались бы в учебниках по статистике. Исследователи обнаружили еще одну закономерность в рамках уже упоминавшейся подтвержденной гипотезы. Они доказали, что у очень высоких отцов рождаются в среднем высокие дети, но не сильно отличающиеся ростом от детей, чьи отцы хоть и выше среднего, но не сильно отличаются от средневысокого роста. То же и у отцов с очень маленьким ростом (отклоняющимся от средних показателей низкорослой группы) - их дети в среднем не отличались по росту от сверстников, чьи отцы были просто невысокими. Функцию, описывающую эту закономерность, они и назвали функцией регрессии. После этого исследования все уравнения, описывающие подобные функции и построенные сходным образом, стали именовать уравнениями регрессии.

Регрессионный анализ - один из методов многомерного статистического анализа данных, объединяющий совокупность статистических приемов, предназначенных для изучения или моделирования связей между одной зависимой и несколькими (или одной) независимыми переменными. Зависимая переменная по принятой в статистике традиции называется откликом и обозначается как V Независимые переменные называются предикторами и обозначаются как X. В ходе анализа некоторые переменные окажутся слабо связанными с откликом и будут в конечном счете исключены из анализа. Оставшиеся переменные, связанные с зависимой, могут именоваться еще факторами.

Регрессионный анализ дает возможность предсказать значения одной или нескольких переменных в зависимости от другой переменной (например, склонность к неконвенциональному политическому поведению в зависимости от уровня образования) или нескольких переменных. Рассчитывается он на PC. Для составления регрессионного уравнения, позволяющего измерить степень зависимости контролируемого признака от факторных, необходимо привлечь профессиональных математиков-программистов. Регрессионный анализ может оказать неоценимую услугу при построении прогностических моделей развития политической ситуации, оценке причин социальной напряженности, при проведении теоретических экспериментов. Регрессионный анализ активно используется для изучения влияния на электоральное поведение граждан ряда социально-демографических параметров: пола, возраста, профессии, места проживания, национальности, уровня и характера доходов.

Применительно к регрессионному анализу используют понятия независимой и зависимой переменных. Независимой называют переменную, которая объясняет или служит причиной изменения другой переменной. Зависимой называют переменную, значение которой объясняют воздействием первой переменной. Например, на президентских выборах в 2004 г. определяющими факторами, т.е. независимыми переменными, выступили такие показатели, как стабилизация материального положения населения страны, уровень известности кандидатов и фактор incumbency. В качестве зависимой переменной в данном случае можно считать процент голосов, поданных за кандидатов. Аналогично в паре переменных «возраст избирателя» и «уровень электоральной активности» независимой является первая, зависимой - вторая.

Регрессионный анализ позволяет решать следующие задачи:

  • 1) установить сам факт наличия или отсутствия статистически значимой связи между Ки X;
  • 2) построить наилучшие (в статистическом смысле) оценки функции регрессии;
  • 3) по заданным значениям X построить прогноз для неизвестного У
  • 4) оценить удельный вес влияния каждого фактора X на У и соответственно исключить из модели несущественные признаки;
  • 5) посредством выявления причинных связей между переменными частично управлять значениями Рпутем регулирования величин объясняющих переменных X.

Регрессионный анализ связан с необходимостью выбора взаимно независимых переменных, влияющих на значение исследуемого показателя, определения формы уравнения регрессии, оценки параметров при помощи статистических методов обработки первичных социологических данных. В основе этого вида анализа лежит представление о форме, направлении и тесноте (плотности) взаимосвязи. Различают парную и множественную регрессию в зависимости от количества исследуемых признаков. На практике регрессионный анализ обычно выполняется совместно с корреляционным. Уравнение регрессии описывает числовое соотношение между величинами, выраженное в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании или убывании другой. При этом ра зл и ч а ют л инейную и нелинейную регрессии. При описании политических процессов в равной степени обнаруживаются оба варианта регрессии.

Диаграмма рассеяния для распределения взаимозависимости интереса к статьям на политические темы (У) и образования респондентов (X) представляет собой линейную регрессию (рис. 30).

Рис. 30.

Диаграмма рассеяния для распределения уровня электоральной активности (У) и возраста респондента (А) (условный пример) представляет собой нелинейную регрессию (рис. 31).


Рис. 31.

Для описания взаимосвязи двух признаков (А"и У) в модели парной регрессии используют линейное уравнение

где а, - случайная величина погрешности уравнения при вариации признаков, т.е. отклонение уравнения от «линейности».

Для оценки коэффициентов а и b используют метод наименьших квадратов, предполагающий, что сумма квадратов отклонений каждой точки на диаграмме разброса от линии регрессии должна быть минимальной. Коэффициенты а ч Ь могут быть вычислены при помощи системы уравнений:

Метод оценки наименьших квадратов дает такие оценки коэффициентов а и Ь, при которых прямая проходит через точку с координатами х и у, т.е. имеет место соотношение у = ах + Ь. Графическое изображение уравнения регрессии называется теоретической линией регрессии. При линейной зависимости коэффициент регрессии представляет на графике тангенс угла наклона теоретической линии регрессии к оси абсцисс. Знак при коэффициенте показывает направление связи. Если он больше нуля, то связь прямая, если меньше - обратная.

В приведенном ниже примере из исследования «Политический Петербург-2006» (табл. 56) показана линейная взаимосвязь представлений граждан о степени удовлетворенности своей жизнью в настоящем и ожиданиями изменений качества жизни в будущем. Связь прямая, линейная (стандартизованный коэффициент регрессии равен 0,233, уровень значимости - 0,000). В данном случае коэффициент регрессии невысокий, однако он превышает нижнюю границу статистически значимого показателя (нижнюю границу квадрата статистически значимого показателя коэффициента Пирсона).

Таблица 56

Влияние качества жизни горожан в настоящем на ожидания

(Санкт-Петербург, 2006 г.)

* Зависимая переменная: «Как Вы думаете, как изменится Ваша жизнь в ближайшие 2-3 года?»

В политической жизни значение изучаемой переменной чаше всего одновременно зависит от нескольких признаков. Например, на уровень и характер политической активности одновременно оказывают влияние политический режим государства, политические традиции, особенности политического поведения людей данного района и социальная микрогруппа респондента, его возраст, образование, уровень дохода, политическая ориентация и т.д. В этом случае необходимо воспользоваться уравнением множественной регрессии , которое имеет следующий вид:

где коэффициент Ь. - частный коэффициент регрессии. Он показывает вклад каждой независимой переменной в определение значений независимой (результирующей) переменной. Если частный коэффициент регрессии близок к 0, то можно сделать вывод, что непосредственной связи между независимыми и зависимой переменными нет.

Расчет подобной модели можно выполнить на PC, прибегнув к помоши матричной алгебры. Множественная регрессия позволяет отразить многофакторность социальных связей и уточнить меру воздействия каждого фактора в отдельности и всех вместе на результирующий признак.

Коэффициент, обозначаемый Ь, называется коэффициентом линейной регрессии и показывает силу связи между вариацией факторного признака X и вариацией результативного признака Y Данный коэффициент измеряет силу связи в абсолютных единицах измерения признаков. Однако теснота корреляционной связи признаков может быть выражена и в долях среднего квадратического отклонения результативного признака (такой коэффициент называется коэффициентом корреляции). В отличие от коэффициента регрессии b коэффициент корреляции не зависит от принятых единиц измерения признаков, а стало быть, он сравним для любых признаков. Обычно считают связь сильной, если / > 0,7, средней тесноты - при 0,5 г 0,5.

Как известно, максимально тесная связь - это связь функциональная, когда каждое индивидуальное значение Y может быть однозначно поставлено в соответствие значению X. Таким образом, чем ближе коэффициент корреляции к 1, тем ближе связь к функциональной. Уровень значимости для регрессионного анализа не должен превышать 0,001.

Коэффициент корреляции долгое время рассматривался как основной показатель тесноты связи признаков. Однако позднее таким показателем стал коэффициент детерминации. Смысл этого коэффициента в следующем - он отражает долю общей дисперсии результирующего признака У , объясняемую дисперсией признака X. Находится он простым возведением в квадрат коэффициента корреляции (изменяющегося от 0 до 1) и в свою очередь для линейной связи отражает долю от 0 (0%) до 1 (100%) значений признака Y, определяемую значениями признака X. Записывается он как I 2 , а в результирующих таблицах регрессионного анализа в пакете SPSS - без квадрата.

Обозначим основные проблемы построения уравнения множественной регрессии.

  • 1. Выбор факторов, включаемых в уравнение регрессии. На этой стадии исследователь сначала составляет общий список основных причин, которые согласно теории обусловливают изучаемое явление. Затем он должен отобрать признаки в уравнение регрессии. Основное правило отбора: факторы, включаемые в анализ, должны как можно меньше коррелировать друг с другом; только в этом случае можно приписать количественную меру воздействия определенному фактору-признаку.
  • 2. Выбор формы уравнения множественной регрессии (на практике чаще пользуются линейной или линейно-логарифмической). Итак, для использования множественной регрессии исследователь сначала должен построить гипотетическую модель влияния нескольких независимых переменных на результирующую. Чтобы полученные результаты были достоверны, необходимо, чтобы модель точно соответствовала реальному процессу, т.е. связь между переменными должна быть линейной, нельзя проигнорировать ни одну значимую независимую переменную, точно так же нельзя включать в анализ ни одну переменную, не имеющую прямого отношения к изучаемому процессу. Кроме того, все измерения переменных должны быть предельно точными.

Из приведенного описания вытекает ряд условий применения этого метода, без соблюдения которых нельзя приступить к самой процедуре множественого регрессионного анализа (МРА). Только соблюдение всех из нижеперечисленных пунктов позволяет корректно осуществлять регрессионный анализ.


Самое обсуждаемое
Григорий отрепьев выдавал себя за царя Григорий отрепьев выдавал себя за царя
Морфологический разбор всех частей речи Морфологический разбор глагола Морфологический разбор всех частей речи Морфологический разбор глагола
Химические свойства воды Высказывания известных учёных о воде Химические свойства воды Высказывания известных учёных о воде


top