Сколько км до линии горизонта на море. Видимый горизонт и его дальность

Сколько км до линии горизонта на море. Видимый горизонт и его дальность

Рис. 4 Основные линии и плоскости наблюдателя

Для ориентирования в море принята система условных линий и плоскостей наблюдателя. На рис. 4 изображен земной шар, на поверхности которого в точке М располагается наблюдатель. Его глаз находится в точке А . Буквой е обозначена высота глаза наблюдателя над уровнем моря. Линия ZMn, проведенная через место наблюдателя и центр земного шара, называется отвесной или вертикальной линией. Все плоскости, проведенные через эту линию, называются вертикальными , а перпендикулярные ей - горизонтальными . Горизонтальная плоскость НН / , проходящая через глаз наблюдателя, называется плоскостью истинного горизонта . Вертикальная плоскость VV / , проходящая через место наблюдателя М и земную ось, называется плоскостью истинного меридиана. В пересечении этой плоскости с поверхностью Земли образуется большой круг РnQPsQ / , называемый истинным меридианом наблюдателя . Прямая, полученная от пересечения плоскости истинного горизонта с плоскостью истинного меридиана, называется линией истинного меридиана или полуденной линией N-S. Этой линией определяется направление на северную и южную точки горизонта. Вертикальная плоскость FF / , перпендикулярная плоскости истинного меридиана, называется плоскостью первого вертикала . В пересечении с плоскостью истинного горизонта она образует линию Е-W, перпендикулярную линии N-S и определяющую направления на восточную и западную точки горизонта. Линии N-S и Е-W делят плоскость истинного горизонта на четверти: NE, SE, SW и NW.

Рис.5. Дальность видимости горизонта

В открытом море наблюдатель видит вокруг судна водную поверхность, ограниченную малым кругом СС1 (рис. 5). Этот круг называется видимым горизонтом. Расстояние De от места судна М до линии видимого горизонта СС 1 называется дальностью видимого горизонта . Теоретическая дальность видимого горизонта Dt (отрезок AB) всегда меньше его действительной дальности De. Это объясняется тем, что из-за различной плотности слоев атмосферы по высоте луч света распространяется в ней не прямолинейно, а по кривой АС. В результате наблюдатель может видеть дополнительно некоторую часть водной поверхности, расположенную за линией теоретического видимого горизонта и ограниченную малым кругом СС 1 . Этот круг и является линией видимого горизонта наблюдателя. Явление преломления световых лучей в атмосфере называется земной рефракцией. Рефракция зависит от атмосферного давления, температуры и влажности воздуха. В одном и том же месте Земли рефракция может меняться даже на протяжении одних суток. Поэтому при расчетах берут среднее значение рефракции. Формула для определения дальности видимого горизонта:


В результате рефракции наблюдатель видит линию горизонта в направлении АС / (рис. 5), касательном к дуге АС. Эта линия приподнята на угол r над прямым лучом АВ. Угол r также называется земной рефракцией. Угол d между плоскостью истинного горизонта НН / и направлением на видимый горизонт называется наклонением видимого горизонта .

ДАЛЬНОСТЬ ВИДИМОСТИ ПРЕДМЕТОВ И ОГНЕЙ. Дальность видимого горизонта позволяет судить о видимости предметов, находящихся на уровне воды. Если предмет имеет определенную высоту h над уровнем моря, то наблюдатель может обнаружить его на расстоянии:

На морских картах и в навигационных пособиях приводится заранее вычисленная дальность видимости огней маяков Dk с высоты глаза наблюдателя 5 м. С такой высоты De равна 4,7 мили. При е , отличной от 5 м, следует вносить поправку. Её величина равна:

Тогда дальность видимости маяка Dn равна:

Дальность видимости предметов, расчитанная по данной формуле, называется геометрической, или географической. Вычисленные результаты соответствуют некоторому среднему состоянию атмосферы в дневное время суток. При мгле, дожде, снегопаде или туманной погоде видимость предметов, естественно, сокращается. Наоборот, при определенном состоянии атмосферы рефракция может быть очень большой, вследствие чего дальность видимости предметов оказывается значительно больше рассчитанной.

Дальность видимого горизонта. Таблица 22 МТ-75:

Таблица вычислена по формуле:

Де = 2.0809 ,

Входя в табл. 22 MT-75 с высотой предмета h над уровнем моря, получают дальность видимости этого предмета с уровня моря. Если к полученной дальности прибавить дальность видимого горизонта, найденную в той же таблице по высоте глаза наблюдателя е над уровнем моря, то сумма этих дальностей составит дальность видимости предмета, без учета прозрачности атмосферы.

Для получения дальности радиолокационного горизонта Дp принято выбранную из табл. 22 дальность видимого горизонта увеличивать на 15%, тогда Дp=2.3930 . Эта формула справедлива для стандартных условий атмосферы: давление 760 мм, температура +15°C, градиент температуры - 0.0065 градуса на метр, относительная влажность, постоянная с высотой, 60%. Любое отклонение от принятого стандарт­ного состояния атмосферы обусловит частичное изменение дальности радиолокационного горизонта. Кроме того, эта дальность, т. е. расстоя­ние, с которого могут быть видны отраженные сигналы на экране радио­локатора, в значительной степени зависит от индивидуальных особенностей радиолокатора и отражающих свойств объекта. По этим причинам пользоваться коэффициентом 1.15 и данными табл. 22 следует с осторожностью.

Сумма дальностей радиолокационного горизонта антенны Лд и наблюдаемого объекта высотой А представит собой максимальное рас­стояние, с которого может вернуться отраженный сигнал.

Пример 1. Определить дальность обнаружения маяка высотой h=42 м от уровня моря с высоты глаза наблюдателя е=15.5 м.
Решение. Из табл. 22 выбирают:
для h = 42 м ..... . Дh = 13.5 мили;
для е = 15.5 м . . . . . . Де = 8.2 мили,
следовательно, даль­ность обнаружения маяка
Дп = Дh+Дe = 21.7 мили.

Дальность видимости предмета можно определить также по номограмме, помещенной на вкладыше (приложение 6). MT-75

Пример 2. Найти радиолокационную дальность объекта высотой h=122 м, если действующая высота радиолокационной антенны Hд= 18.3 м над уровнем моря.
Решение. Из табл. 22 выбирают дальности видимости объекта и антенны с уровня моря соответственно 23.0 и 8.9 мили. Суммируя эти дальности и умножая их на коэффициент 1.15, получают, что объект при стандартных условиях атмосферы, вероятно, будет обнаружен с расстояния 36.7 мили.

Какова дальность до линии горизонта для наблюдателя, стоящего на земле? Ответ — приближённое расстояние до горизонта — можно найти с помощью теоремы Пифагора.

Для проведения приближённых расчётов сделаем допущение, что Земля имеет форму шара. Тогда стоящий вертикально человек будет продолжением земного радиуса, а линия взгляда, направленного на горизонт, — касательной к сфере (поверхности Земли). Так как касательная перпендикулярна радиусу, проведённому в точку касания, то треугольник (центр Земли) —(точка касания) —(глаз наблюдателя) является прямоугольным.

Две стороны в нём известны. Длина одного из катетов (стороны, прилегающей к прямому углу) равна радиусу Земли $R$, а длина гипотенузы (стороны, лежащей против прямого угла) равна $R+h$, где $h$ — расстояние от земли до глаз наблюдателя.

По теореме Пифагора, сумма квадратов катетов равна квадрату гипотенузы. Значит, расстояние до горизонта равно
$$
d=\sqrt{(R+h)^2-R^2} = \sqrt{(R^2+2Rh+h^2)-R^2} =\sqrt{2Rh+h^2}.
$$Величина $h^2$ очень мала по сравнению со слагаемым $2Rh$, поэтому верно приближённое равенство
$$
d≈ \sqrt{2Rh}.
$$
Известно, что $R≈ 6400$ км, или $R≈ 64\cdot10^5$ м. Будем считать, что $h≈ 1{,}6$ м. Тогда
$$
d≈\sqrt{2\cdot64\cdot10^5\cdot 1{,}6}=8\cdot 10^3 \cdot \sqrt{0{,}32}.
$$Используя приближённое значение $\sqrt{0{,}32}≈ 0{,}566$, находим
$$
d≈ 8\cdot10^3 \cdot 0{,}566=4528.
$$Полученный ответ — в метрах. Если перевести найденное приближённое расстояние от наблюдателя до горизонта в километры, то получим $d≈ 4,5$ км.

В дополнение — три микросюжета, связанных с рассмотренной задачей и проделанными вычислениями.

I. Как связано расстояние до горизонта с изменением высоты точки наблюдения? Формула $d≈ \sqrt{2Rh}$ даёт ответ: чтобы увеличить расстояние $d$ вдвое, высоту $h$ надо увеличить в четыре раза!

II. В формуле $d≈ \sqrt{2Rh}$ нам пришлось извлекать квадратный корень. Конечно, читатель может взять смартфон со встроенным калькулятором, но, во‐первых, полезно задуматься, а как же решает эту задачу калькулятор, а во‐вторых, стоит ощутить умственную свободу, независимость от «всезнающего» гаджета.

Существует алгоритм, сводящий извлечение корня к более простым операциями — сложению, умножению и делению чисел. Для извлечения корня из числа $a>0$ рассмотрим последовательность
$$
x_{n+1}=\frac12 (x_n+\frac{a}{x_n}),
$$где $n=0$, 1, 2, …, а в качестве $x_0$ можно взять любое положительное число. Последовательность $x_0$, $x_1$, $x_2$, … очень быстро сходится к $\sqrt{a}$.

Например, при вычислении $\sqrt{0,32}$ можно взять $x_0=0,5$. Тогда
$$
\eqalign{
x_1 &=\frac12 (0,5+\frac{0,32}{0,5})=0,57,\cr
x_2 &=\frac12 (0,57+\frac{0,32}{0,57})≈ 0,5657.\cr}
$$Уже на втором шаге мы получили ответ, верный в третьем знаке после запятой ($\sqrt{0,32}=0,56568…$)!

III. Иногда алгебраические формулы удаётся столь наглядно представить как соотношения элементов геометрических фигур, что всё «доказательство» заключается в рисунке с подписью «Смотри!» (в стиле древних индийских математиков).

Объяснить геометрически можно и использованную формулу «сокращённого умножения» для квадрата суммы
$$
(a+b)^2=a^2+2ab+b^2.
$$Жан‐Жак Руссо в «Исповеди» писал: «Когда я в первый раз обнаружил при помощи вычисления, что квадрат бинома равен сумме квадратов его членов и их удвоенному произведению, я, несмотря на правильность произведённого мною умножения, не хотел этому верить до тех пор, пока не начертил фигуры».

Литература

  • Перельман Я. И. Занимательная геометрия на вольном воздухе и дома. - Л.: Время, 1925. - [И любое издание книги Я. И. Перельмана «Занимательная геометрия»].

Глава VII . Навигация.

Навигация - основа науки о судовождении. Навигационный способ судовождения заключается в том, чтобы провести судно из одного места в другое наивыгоднейшим, кратчайшим и безопасным путем. Этот способ решает две задачи: как направить судно по избранному пути и как определять его место в море по элементам движения судна и наблюдениям береговых предметов с учетом воздействия на судно внешних сил - ветра и течения.

Чтобы быть уверенным в безопасности движения своего судна, необходимо знать место судна на карте, определяющее его положение относительно опасностей в данном района плавания.

Навигация занимается разработкой основ судовождения, она изучает:

Размеры и поверхность земли, способы изображения земной поверхности на картах;

Способы счисления и прокладки пути судна на морских картах;

Способы определения места судна на море по береговым предметам.

§ 19. Основные сведения о навигации.

1. Основные точки, круги, линии и плоскости

Наша земля имеет форму сфероида, у которого большая полуось ОЕ равна 6378 км, а малая полуось ОР 6356 км (рис. 37).


Рис. 37. Определение координат точки на земной поверхности

Практически, с некоторым допущением, землю можно считать шаром, вращающимся вокруг оси, занимающей определенное положение в пространстве.

Для определения точек на земной поверхности ее принято мысленно делить вертикальными и горизонтальными плоскостя ми, образующими с поверхностью земли линии - меридианы и параллели. Концы воображаемой оси вращения земли называются полюсами - северным, или нордовым, и южным, или зюйдовым.

Меридианы - большие круги, проходящие через оба полюса. Параллели - малые круги на земной поверхности, параллельные экватору.

Экватор - большой круг, плоскость которого проходит через центр земли перпендикулярно оси ее вращения.

Как меридианов, так и параллелей на земной поверхности можно вообразить бесчисленное множество. Экватор, меридианы и параллели образуют сетку географических координат земли.

Место любой точки А на земной поверхности можно определить по ее широте (f) и долготе (l).

Широтой места называется дуга меридиана от экватора до параллели данного места. Иначе: широта места измеряется центральным углом, заключенным между плоскостью экватора и направлением из центра земли на данное место. Широта измеряется в градусах от О до 90° по направлению от экватора к полюсам. При расчетах считают, что северная широта f N имеет знак плюс, южная широта - f S знак минус.

Разностью широт (f 1 - f 2) называется дуга меридиана, заключенная между параллелями данных точек (1 и 2).

Долготой места называется дуга экватора от нулевого меридиана до меридиана данного места. Иначе: долгота места измеряется дугой экватора, заключенной между плоскостью нулевого меридиана и плоскостью меридиана данного места.

Разностью долгот (l 1 -l 2) называется дуга экватора, заключенная между меридианами заданных точек (1 и 2).

Нулевой меридиан - гринвичский меридиан. От него производится измерение долготы в обе стороны (к востоку и западу) от 0 до 180°. Западная долгота отсчитывается на карте влево от гринвичского меридиана и при расчетах берется со знаком минус; восточная - вправо и имеет знак плюс.

Широта и долгота любой точки на земле называются географическими координатами этой точки.

2. Деление истинного горизонта

Мысленно воображаемая горизонтальная плоскость, проходящая через глаз наблюдателя, называется плоскостью истинного горизонта наблюдателя, или истинного горизонта (рис. 38).

Предположим, что в точке А находится глаз наблюдателя, линия ZABC - отвесная, HH 1 - плоскость истинного горизонта, а линия P NP S - ось вращения земли.

Из множества вертикальных плоскостей только одна плоскость на чертеже будет совпадать с осью вращения земли и точкой А. Пересечение этой вертикальной плоскости с поверхностью земли дает на ней большой круг P N BEP SQ , называемый истинным меридианом места, или меридианом наблюдателя. Плоскость истинного меридиана пересекается с плоскостью истинного горизонта и дает на последней линию норд-зюйда NS . Линия OW , перпендикулярная линии истинного норд-зюйда, называется линией истинного оста и веста (востока и запада).

Таким образом, четыре основные точки истинного горизонта - север, юг, восток и запад - занимают в любом месте на земле, кроме полюсов, вполне определенное положение, благодаря чему относительно этих точек можно определять различные направления по горизонту.

Направления N (север), S (юг), О (восток), W (запад) носят название главных румбов. Вся окружность горизонта делится на 360°. Деление производится от точки N по движению часовой стрелки.

Промежуточные направления между главными румбами называются четвертными румбами и носят наименование NO , SO , SW , NW . Главные и четвертные румбы имеют следующие значения в градусах:


Рис. 38. Истинный горизонт наблюдателя

3. Видимый горизонт, дальность видимого горизонта

Видимое с судна водное пространство ограничивается окружностью, образованной кажущимся пересечением небесного свода с поверхностью воды. Эта окружность называется видимым горизонтом наблюдателя. Дальность видимого горизонта зависит не только от высоты расположения глаз наблюдателя над водной поверхностью, но и от состояния атмосферы.



Рис 39. Дальность видимости предмета

Судоводитель всегда должен знать, как далеко он видит горизонт в разных положениях, например, стоя у штурвала, на палубе, сидя и т. п.

Дальность видимого горизонта определяется по формуле:

d = 2,08

или, приближенно, для высоты глаза наблюдателя менее 20 м по формуле:

d = 2 ,

где d - дальность видимого горизонта в милях;

h - высота глаза наблюдателя, м.

Пример. Если высота глаза наблюдателя h = 4 м, то дальность видимого горизонта 4 мили.

Дальность видимости наблюдаемого предмета (рис. 39), или, как ее называют, географическая даль ность D n , является суммой дальностей видимого горизонта с высоты этого предмета Н и высоты глаза наблюдателя А.

Наблюдатель А (рис. 39), находящийся на высоте h , со своего судна может видеть горизонт только на расстояние d 1 , т. е. до точки В водной поверхности. Если же поместить наблюдателя в точке В водной поверхности, то он мог бы видеть маяк С, расположенный от него па расстоянии d 2 ; поэтому наблю датель, находящийся в точке А, увидит маяк с расстояния, равного D n :

D n= d 1+d 2.

Дальность видимости предметов, расположенных выше уровня воды, можно определить по формуле:

D n = 2,08( + ).

Пример. Высота маяка H = 1б,8 м, высота глаза наблюдателя h = 4 м.

Решение. D n = l 2,6 мили, или 23,3 км.

Дальность видимости предмета определяется также приближенно по номограмме Струйского (рис. 40). Прикладывая линейку так, чтобы одной прямой были соединены высоты, соответствующие глазу наблюдателя и наблюдаемому предмету, получают на средней шкале дальность видимости.

Пример. Найти дальность видимости предмета высотой над уровнем моря в 26,2 м при высоте глаза наблюдателя над уровнем моря в 4,5 м.

Решение. D n = 15,1 мили (пунктирная линия на рис. 40).

На картах, лоциях, в навигационных пособиях, в описании знаков и огней дальность видимости дана для высоты глаза наблюдателя 5 ж от уровня воды. Так как на маломерном судне глаз наблюдателя расположен ниже 5 м, для него дальность видимости будет меньше обозначенной в пособиях или на карте (см. табл. 1).

Пример. На карте обозначена дальность видимости маяка в 16 миль. Это значит, что наблюдатель увидит этот маяк с расстояния 16 миль, если его глаз будет на высоте 5 м над уровнем моря. Если же глаз наблюдателя находится на высоте 3 м, то видимость соответственно уменьшится на разность дальности видимости горизонта для высот 5 и 3 м. Дальность видимости горизонта для высоты 5 м равна 4,7 мили; для высоты 3 м - 3,6 мили, разность 4,7 - 3,6=1,1 мили.

Следовательно, дальность видимости маяка будет равна не 16 милям, а только 16 - 1,1 = 14,9 мили.


Рис. 40. Номограмма Струйского

Видимый горизонт, в отличие от истинного горизонта, представляет собой окружность, образованную точками касания лучей, проходящих через глаз наблюдателя касательно к земной поверхности. Представим, что глаз наблюдателя (рис. 8) находится в точке А на высоте ВА=е над уровнем моря. Из точки А можно провести бесчисленное количество лучей Ac, Ac¹, Ас², Ас³ и т. д., касательных к поверхности Земли. Точки касания с, с¹ с² и с³ образуют окружность малого круга.

Сферический радиус Вс малого круга с с¹с²с³ называется теоретической дальностью видимого горизонта.

Величина сферического радиуса находится в зависимости от высоты глаза наблюдателя над уровнем моря.

Так, если глаз наблюдателя будет находиться в точке A1 на высоте ВА¹ = е¹ над уровнем моря, то и сферический радиус Вс" будет больше сферического радиуса Вс.

Чтобы определить зависимость между высотой глаза наблюдателя и теоретической дальностью его видимого горизонта, рассмотрим прямоугольный треугольник АОс:

Ас² = АО² - Ос²; АО = OB + е; OB = R,

Тогда АО = R + е; Ос = R.

Вследствие незначительности высоты глаза наблюдателя над уровнем моря по сравнению с размерами радиуса Земли длину касательной Ас может принять равной величине сферического радиуса Вс и, обозначив теоретическую дальность видимого горизонта через D T получим

D 2T = (R + e)² - R² = R² + 2Re + e² - R² = 2Re + e²,


Рис. 8


Учитывая, что высота глаза наблюдателя е на судах не превышает 25 м, a 2R = 12 742 220 м, отношение е/2R настолько мало, что без ущерба для точности им можно пренебречь. Следовательно,


так как е и R выражаются в метрах, то и Dт получится тоже в метрах. Однако действительная дальность видимого горизонта всегда больше теоретической, так как луч, идущий от глаза наблюдателя к точке, находящейся на земной поверхности, из-за неодинаковой плотности слоев атмосферы по высоте преломляется.

В данном случае луч от точки А к с идет не по прямой Ас, а по кривой ASm" (см. рис. 8). Поэтому наблюдателю точка с представляется видимой по направлению касательной AT, т. е. приподнятой на угол r = L ТАс, называемый углом земной рефракции. Угол d = L HAT называют наклонением видимого горизонта. И на самом деле, видимым горизонтом будет являться малый круг m", m" 2 , тз", с несколько большим сферическим радиусом (Bm" > Вс).

Величина угла земной рефракции не является постоянной и зависит от преломляющих свойств атмосферы, которые изменяются от температуры и влажности воздуха, количества в воздухе взвешенных частиц. В зависимости от времени года и даты суток она также изменяется, поэтому действительная дальность видимого горизонта по сравнению с теоретической может увеличиваться до 15%.

В навигации увеличение действительной дальности видимого горизонта по сравнению с теоретической принимают 8%.

Поэтому, обозначив действительную, или, как еще ее называют, географическую, дальность видимого горизонта через D e , получим:


Чтобы получить Dе в морских милях (принимая R и е в метрах), радиус земли R, так же как и высоту глаза е, делим на 1852 (1 морская миля равна 1852 м). Тогда
Чтобы получить результат в километрах, вводим множитель 1,852. Тогда
дл я облегчения расчетов по определению дальности видимого горизонта в табл. 22-а (МТ-63) дана дальность видимого горизонта в зависимости от е, в пределах от 0,25 до 5100 м, рассчитанная по формуле (4а).

Если действительная высота глаза не совпадает с числовыми значениями, указанными в таблице, то дальность видимого горизонта может быть определена линейным интерполированием между двумя близкими к действительной высоте глаза величинами.

Дальность видимости предметов и огней

Дальность видимости предмета Dn (рис. 9) будет складываться из двух дальностей видимого горизонта, зависящих от высоты глаза наблюдателя (D e) и высоты предмета (D h), т. е.
Она может быть определена по формуле
где h - высота ориентира над уровнем воды, м.

Для облегчения определения дальности видимости предметов пользуются табл. 22-в (МТ-63), рассчитанной по формуле (5а): Чтобы определить по этой таблице, с какого расстояния откроется предмет, необходимо знать высоту глаза наблюдателя над уровнем воды и высоту предмета в метрах.

Дальность видимости предмета можно также определить по специальной номограмме (рис. 10). Например, высота глаза над уровнем воды 5,5 м, а высота h обстановочного знака 6,5 м, чтобы определить D n , к номограмме прикладывают линейку так, чтобы она соединяла на крайних шкалах точки, соответствующие h и е. Точка пересечения линейки со средней шкалой номограммы покажет искомую дальность видимости предмета D n (на рис. 10 D n = 10,2 мили).

В пособиях по судовождению - на картах, в лоциях, в описаниях огней и знаков - дальность видимости предметов DK указывается при высоте глаза наблюдателя 5 м (на английских картах - 15 футов).

В том случае, когда действительная высота глаза наблюдателя другая, необходимо ввести поправку AD (см. рис. 9).


Рис. 9


Пример. Дальность видимости предмета, указанная на карте, DK = 20 милям, а высота глаза наблюдателя е = 9 м. Определить действительную дальность видимости предмета D n с использованием табл. 22-а (МТ -63). Решение.


В ночное время дальность видимости огня зависит не только от его высоты над уровнем воды, но также от силы источника освещения и от разряда осветительного аппарата. Обычно осветительный аппарат и сила источника освещения рассчитываются таким образом, чтобы дальность видимости огня ночью соответствовала действительной дальности видимости горизонта с высоты огня над уровнем моря, но бывают и исключения.

Поэтому огни имеют свою «оптическую» дальность видимости, которая может быть больше или меньше дальности видимости горизонта с высоты огня.

В пособиях по судовождению указывается действительная (математическая) дальность видимости огней, но если она больше оптической, то указывается последняя.

Дальность видимости береговых знаков судоходной обстановки зависит не только от состояния атмосферы, но и от многих других факторов, к которым относятся:

А) топографические (определяются характером окружающей местности, в частности преобладанием того или иного цвета в окружающем ландшафте);

Б) фотометрические (яркость и цвет наблюдаемого знака и фона, на котором он проектируется);

В) геометрические (расстояние до знака, его размеры и форма).

Дальность видимости горизонта

Наблюдаемая в море линия, по которой море как бы соединяется с небосводом, называется видимым горизонтом наблюдателя.

Если глаз наблюдателя находится на высоте е М над уровнем моря (т. А рис. 2.13), то луч зрения идущий по касательной к земной поверхности, определяет на земной поверхности малый круг аа , радиуса D .

Рис. 2.13. Дальность видимости горизонта

Это было бы верно, если бы Землю не окружала атмосфера.

Если принять Землю за шар и исключить влияние атмосферы то, из прямоугольного треугольника ОАа следует: ОА=R+e

Так как величина чрезвычайно мала (для е = 50м при R = 6371км – 0,000004 ), то окончательно имеем:

Под действием земной рефракции, в результате преломления зрительного луча в атмосфере, наблюдатель видит горизонт дальше (по кругу вв ).

(2.7)

где х – коэффициент земной рефракции (» 0,16).

Если принять дальность видимого горизонта D e в милях, а высоту глаза наблюдателя над уровнем моря (е М ) в метрах и подставить значение радиуса Земли (R =3437,7 мили = 6371 км ), то окончательно получим формулу для расчета дальности видимого горизонта

(2.8)

Например:1) е = 4 м D е = 4,16 мили; 2) е = 9 м D е = 6,24 мили;

3) е = 16 м D е = 8,32 мили; 4) е = 25 м D е = 10,4 мили.

По формуле (2.8) составлена таблица № 22 «МТ-75» (с. 248) и таблица № 2.1 «МТ-2000» (с. 255) по (е М ) от 0,25 м ¸ 5100 м . (см. табл. 2.2)

Дальность видимости ориентиров в море

Если наблюдатель, высота глаза которого находится на высоте е М над уровнем моря (т. А рис. 2.14), наблюдает линию горизонта (т. В ) на расстоянии D е(миль) , то, по аналогии, и с ориентира (т. Б ), высота которого над уровнем моря h M , видимый горизонт (т. В ) наблюдается на расстоянии D h(миль) .

Рис. 2.14. Дальность видимости ориентиров в море

Из рис. 2.14 очевидно, что дальность видимости предмета (ориентира), имеющего высоту над уровнем моря h M , с высоты глаза наблюдателя над уровнем моря е М будет выражаться формулой:

Формула (2.9) решается с помощью таблицы 22 «МТ-75» с. 248 или таблицы 2.3 «МТ-2000» (с. 256).

Например: е = 4 м, h = 30 м, D П = ?

Решение: для е = 4 м ® D е = 4,2 мили;

для h = 30 м® D h = 11,4 мили.

D П = D е + D h = 4,2 + 11,4 = 15,6 мили.

Рис. 2.15. Номограмма 2.4. «МТ-2000»

Формулу (2.9) можно решать и с помощью Приложения 6 к «МТ-75» или номограммы 2.4 «МТ-2000» (с. 257) ® рис. 2.15.

Например: е = 8 м, h = 30 м, D П = ?

Решение: Значения е = 8 м (правая шкала) и h = 30 м (левая шкала) соединяем прямой линией. Точка пересечения этой линии со средней шкалой (D П ) и даст нам искомую величину 17,3 миль. (см. табл. 2.3).

Географическая дальность видимости предметов (из табл. 2.3. «МТ-2000»)

Примечание:

Высота навигационного ориентира над уровнем моря выбирается из навигационного руководства для плавания «Огни и знаки» («Огни»).

2.6.3. Дальность видимости огня ориентира, показанная на карте (рис. 2.16)

Рис. 2.16. Дальности видимости огня маяка, показанные

На навигационных морских картах и в навигационных пособиях дальность видимости огня ориентира дана для высоты глаза наблюдателя над уровнем моря е = 5 м, т.е.:

Если же действительная высота глаза наблюдателя над уровнем моря отличается от 5 м, то для определения дальности видимости огня ориентира необходимо к дальности, показанной на карте (в пособии), прибавить (если е > 5 м), или отнять (если е < 5 м) поправку к дальности видимости огня ориентира (DD К ), показанной на карте за высоту глаза.

(2.11)

(2.12)

Например: D К = 20 миль, е = 9 м.

D О = 20,0+1,54=21,54мили

тогда: D О = D К + ∆ D К = 20,0+1,54 =21,54 мили

Ответ: D О = 21,54 мили.

Задачи на расчет дальностей видимости

А) Видимого горизонта (D e ) и ориентира (D П )

Б) Открытие огня маяка

Выводы

1. Основными для наблюдателя являются:

а) плоскости:

Плоскость истинного горизонта наблюдателя (пл. ИГН);

Плоскость истинного меридиана наблюдателя (пл. ИМН);

Плоскость первого вертикала наблюдателя;

б) линии:

Отвесная линия (нормаль) наблюдателя,

Линия истинного меридиана наблюдателя ® полуденная линия N-S ;

Линия Е-W .

2. Системами счета направлений являются:

Круговая (0°¸360°);

Полукруговая (0°¸180°);

Четвертная (0°¸90°).

3. Любое направление на поверхности Земли может быть измерено углом в плоскости истинного горизонта, принимая за начало отсчета линию истинного меридиана наблюдателя.

4. Истинные направления (ИК, ИП) определяются на судне относительно северной части истинного меридиана наблюдателя, а КУ (курсовой угол) – относительно носовой части продольной оси судна.

5. Дальность видимого горизонта наблюдателя (D e ) рассчитывается по формуле:

.

6. Дальность видимости навигационного ориентира (днем в хорошую видимость) рассчитывается по формуле:

7. Дальность видимости огня навигационного ориентира, по его дальности (D К ), показанной на карте, рассчитывается по формуле:

, где .


Самое обсуждаемое
Момент инерции тела относительно неподвижной оси Момент инерции тела относительно неподвижной оси
Справочник по правописанию, произношению, литературному редактированию §212 Справочник по правописанию, произношению, литературному редактированию §212
Что такое хорошее образование? Что такое хорошее образование?


top