Решение уравнений с неизвестным в 4 степени. Степенные или показательные уравнения

Решение уравнений с неизвестным в 4 степени. Степенные или показательные уравнения

На канал на youtube нашего сайта сайт, чтобы быть в курсе всех новых видео уроков.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

2 х = 2 3

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

2 х = 2 3
х = 3

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

3 3х — 9 х+8 = 0

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n) m = a nm .

3 3х = (3 2) х+8

Получим 9 х+8 =(3 2) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10 4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n) m = a nm .

4 х = (2 2) х = 2 2х

И еще используем одну формулу a n a m = a n + m:

2 2х+4 = 2 2х 2 4

Добавляем в уравнение:

2 2х 2 4 — 10 2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Решим уравнение:

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2) х = 3 2х

Получаем уравнение:
3 2х — 12 3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены . Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t 1 = 9
t 2 = 3

Возвращаемся к переменной x .

Берем t 1:
t 1 = 9 = 3 х

Стало быть,

3 х = 9
3 х = 3 2
х 1 = 2

Один корень нашли. Ищем второй, из t 2:
t 2 = 3 = 3 х
3 х = 3 1
х 2 = 1
Ответ: х 1 = 2; х 2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Вступайте в группу

Решение Декарта - Эйлера

Сделав подстановку , получим уравнение в следующем виде (он называется «неполным»):

y 4 + p y 2 + q y + r = 0 .

Корни y 1 , y 2 , y 3 , y 4 такого уравнения равны одному из следующих выражений:

в которых сочетания знаков выбираются таким образом, чтобы выполнялось следующее соотношение:

,

причём z 1 , z 2 и z 3 - это корни кубического уравнения

Решение Феррари

Основная статья : Метод Феррари

Представим уравнение четвёртой степени в виде:

A x 4 + B x 3 + C x 2 + D x + E = 0,

Его решение может быть найдено из следующих выражений:

если β = 0 , решив u 4 + αu 2 + γ = 0 и, сделав подстановку , найдём корни: . , (любой знак квадратного корня подойдёт) , (три комплексных корня, один из которых подойдёт) Два ± s должны иметь одинаковый знак, ± t - независимы. Для того, чтобы найти все корни, надо найти x для знаковых комбинаций ± s ,± t = +,+ для +,− для −,+ для −,−. Двойные корни появятся два раза, тройные корни - три раза и корни четвёртого порядка - четыре раза. Порядок корней зависит от того, какой из кубических корней U выбран.

См. также

  • Легко решаемые типы уравнений 4 степени: Биквадратное уравнение , возвратное уравнение четвёртой степени

Литература

  • Корн Г., Корн Т. (1974) Справочник по математике.

Ссылки

  • Решение Феррари (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Уравнение четвертой степени" в других словарях:

    уравнение четвертой степени - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN quartic equation … Справочник технического переводчика

    График многочлена 4 ой степени с четырьмя корнями и тремя критическими точками. Уравнение четвёртой степени в математике алгебраическое уравнение вида: Четвёртая степень для алгебраических уравнений является наивысшей, при которой… … Википедия

    Уравнение вида: anxn + an − 1xn − 1 + ... + a1x + a0 = 0 называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, то есть если an − k = ak, при k = 0, 1, …, n. Содержание 1 Уравнение четвёртой степени … Википедия

    В котором неизвестный член в четвертой степени. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. БИКВАДРАТНОЕ УРАВНЕНИЕ от лат. bis, дважды, и quadratum, квадрат. Уравнение, в котором наибольшая степень… … Словарь иностранных слов русского языка

    Вместе с арифметикой есть наука о числах и через посредство чисел о величинах вообще. Не занимаясь изучением свойств каких нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин как таковых, независимо от… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Совокупность прикладных знаний, позволяющих авиационным инженерам на занятий в области аэродинамики, проблем прочности, двигателестроения и динамики полета летательных аппаратов (т.е. теории) создать новый летательный аппарат или улучшить… … Энциклопедия Кольера

    Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом… … Энциклопедия Кольера

    История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

    Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера

    Теорема Абеля Руффини утверждает, что общее уравнение степени при неразрешимо в радикалах. Содержание 1 Подробности … Википедия

В общем случае решение уравнения четвёртой степени осуществляется с использованием методов решения уравнений для высших степеней, например, методом Феррари или с помощью схемы Горнера. Но некоторые уравнения 4-ой степени имеют более простое решение.

Существует несколько особых типов уравнений четвертой степени, со способами решения которых вы познакомитесь ниже:

  • Биквадратное уравнения $ax^4+bx^2+c=0$;
  • Возвратные уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$;
  • Уравнения вида $ax^4+b=0$.

Решение биквадратных уравнений четвёртой степени

Биквадратные уравнения $ax^4+bx^2+c=0$ сводятся к квадратным путём замены переменной $x^2$ на новую, например, на $y$. После замены решается новое полученное уравнение, а затем значение найденной переменной подставляется в уравнение $x^2=y$. Результатом решения будут корни уравнения $x^2=y$.

Пример 1

Решите уравнение $x(x-1)(x-2)(x-3)=24$:

Раскроем скобки в многочлене:

$(x^2-3x)(x^2-3x+2)=24$

В таком виде становится очевидно, что в качестве новой переменной можно выбрать выражение $y=x^2-3x$, подставим её:

$y \cdot (y+2)=24$

Теперь решим два квадратных уравнения $x^2-3x=-4$ и $x^2-3x=-6$.

Корни первого уравнения $x_1{1,2}=4;-1$, второе решений не имеет.

Решение возвратных уравнений 4 степени

Эти уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$ повторяют своими коэффициентами при младших членах коэффициенты при многочленах со старшими степенями. Для решения такого уравнения сначала делят его на $x^2$:

$ax^4+bx^3+cx^2 +bx+ a=0|:x^2$

$ax^2+bx+c+\frac{b}{x} + \frac{a}{x^2}=0$

$a(x^2+\frac{1}{x^2})+b(x+\frac{1}{x}) + c=0$

Затем заменяют $(x+\frac{1}{x})$ на новую переменную, тогда $(x^2+\frac{1}{x^2})=y^2-2$, после подстановки получаем следующее квадратное уравнение:

$a(y^2-2)+by+c=0$

После этого ищем корни уравнений $x+\frac{1}{x}=y_1$ и $x+\frac{1}{x}=y_2$.

Аналогичным методом решаются возвратные уравнения вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$.

Пример 2

Решите уравнение:

$3x^4-2x^3-9x^2-4x+12=0$

Данное уравнение – возвратное уравнение вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$. Поэтому разделим всё уравнение на $x^2$:

$3x^2-2x-9 \cdot \frac{2 \cdot 2}{x}+3 \cdot (\frac{2}{x})^2=0$

$3(x^2+\frac{4}{x^2})-2(x+\frac{2}{x}-9=0$

Произведём замену выражения $x+\frac{2}{x}$: $3(y^2-4)-2y-9=0$

Рассчитаем корни данного уравнения, они равны $y_1=3$ и $y_2=-\frac{7}{3}$.

Соответственно, теперь необходимо решить два уравнения $x+\frac{2}{x}=3$ и $x+\frac{2}{x}=-\frac{7}{3}$. Решение первого уравнения - $x_1=1, x_2=2$, второе уравнение не имеет корней.

Следовательно, корнями исходного уравнения являются $x_1=1, x_2=2$.

Уравнения вида $ax^4+b=0$

Корни уравнения такой разновидности находятся с помощью применения формул сокращённого умножения.

Вскоре после того, как Кардано опубликовал способ решения кубических уравнений, его ученики и последователи нашли способы сведения общего уравнения четвертой степени к кубическому уравнению. Изложим наиболее простой способ, принадлежащий Л. Феррари.

При изложении способа нужно будет воспользоваться следующей элементарной леммой.

Лемма. Для того чтобы квадратный трехчлен был квадратом линейного двучлена, необходимо и достаточно, чтобы его дискриминант равнялся нулю.

Доказательство. Необходимость. Пусть . Тогда Достаточность. Пусть Тогда

Идея излагаемого способа состоит в том, чтобы представить левую часть уравнения в виде разности двух квадратов. Тогда ее можно будет разложить на два множителя второй степени, и решение уравнения приведется к решению двух квадратных уравнений. Для достижения цели левую часть представим в виде:

Здесь у - вспомогательная неизвестная, которую нужно подобрать так, чтобы выражение в квадратных скобках оказалось квадратом линейного двучлена. В силу леммы для этого необходимо и достаточно выполнения условия

Это условие есть уравнение третьей степени относительно у. После раскрытия скобок оно преобразуется к виду

Пусть - один из корней этого уравнения. Тогда при условие будет выполнено, так что имеет место

при некоторых k и I. Исходное уравнение примет вид

Приравнивая нулю каждый из сомножителей, мы найдем четыре корня исходного уравнения.

Сделаем еще одно замечание. Пусть - корни первого сомножителя, и - корни второго. Тогда Сложив эти равенства, получим, что

Таким образом, мы получили выражение корня вспомогательного кубического уравнения через корни исходного уравнения четвертой степени.

Пример. Решить уравнение . Согласно изложенному выше методу преобразуем левую часть:

Теперь положим . После образований получим уравнение

Легко видеть, что одним из корней этого уравнения является число . Подставив его в преобразованную левую часть исходного уравнения, получим:

Приравнивая сомножители нулю, получим

Что касается уравнений выше четвертой степени, то здесь были известны некоторые классы уравнений сравнительно частного вида, допускающих алгебраические решения в радикалах, т. е. в виде результатов арифметических действий и действия извлечения корня. Однако попытки дать решение общих уравнений пятой степени и выше были безуспешны, пока, наконец, в начале 19 в. Руффини и Абель не доказали, что решение такого рода для общих уравнений выше четвертой степени невозможно. Наконец, в 1830 г. гениальному французскому математику Э. Галуа удалось найти необходимые и достаточные условия (проверяемые довольно сложно) для разрешимости в радикалах конкретно заданного уравнения. При этом Галуа создал и использовал новую для своего времени теорию групп подстановок.


2x 4 + 5x 3 - 11x 2 - 20x + 12 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 12 являются ±1, ±2, ±3, ±4, ±6, ±12. Начнем их подставлять по-очереди:

1: 2 + 5 - 11 - 20 + 12 = -12 ⇒ число 1

-1: 2 - 5 - 11 + 20 + 12 = 18 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 16 + 5 ∙ 8 - 11 ∙ 4 - 20 ∙ 2 + 12 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x - 2 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

2 5 -11 -20 12
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

2 5 -11 -20 12
2 2
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
2 5 -11 -20 12
2 2 9
2 ∙ 2 + 5 = 9
2 5 -11 -20 12
2 2 9 7
2 ∙ 9 - 11 = 7
2 5 -11 -20 12
2 2 9 7 -6
2 ∙ 7 - 20 = -6
2 5 -11 -20 12
2 2 9 7 -6 0
2 ∙ (-6) + 12 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(2x 3 + 9x 2 + 7x - 6)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 9x 2 + 7x - 6.

Опять ищем корень среди делителей свободного члена. Делителями числа -6 являются ±1, ±2, ±3, ±6.

1: 2 + 9 + 7 - 6 = 12 ⇒ число 1 не является корнем многочлена

-1: -2 + 9 - 7 - 6 = -6 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 9 ∙ 4 + 7 ∙ 2 - 6 = 60 ⇒ число 2 не является корнем многочлена

-2: 2 ∙ (-8) + 9 ∙ 4 + 7 ∙ (-2) - 6 = 0 ⇒ число -2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

2 5 -11 -20 12
2 2 9 7 -6 0
-2 2
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5
-2 ∙ 2 + 9 = 5
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3
-2 ∙ 5 + 7 = -3
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-2 ∙ (-3) - 6 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(x + 2)(2x 2 + 5x - 3)

Многочлен 2x 2 + 5x - 3 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант , а можно поискать корень среди делителей числа -3. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -3

2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2 -1
-3 ∙ 2 + 5 = -1
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2 -1 0
-3 ∙ (-1) - 3 = 0

Таким образом мы исходный многочлен разложили на линейные множители.


Самое обсуждаемое
Креационная теория сотворения мира Кто сотворил мир Креационная теория сотворения мира Кто сотворил мир
Владимирский базовый медицинский колледж Владимирский базовый медицинский колледж
Явление которое происходит только в мейозе Явление которое происходит только в мейозе


top