Правила нахождения тригонометрических функций: синуса, косинуса, тангенса и котангенса. Правила нахождения тригонометрических функций: синуса, косинуса, тангенса и котангенса Tg a 2 чему равен угол

Правила нахождения тригонометрических функций: синуса, косинуса, тангенса и котангенса. Правила нахождения тригонометрических функций: синуса, косинуса, тангенса и котангенса Tg a 2 чему равен угол

Понятия синуса, косинуса, тангенса и котангенса являются основными категориями тригонометрии — раздела математики, и неразрывно связаны с определением угла. Владение этой математической наукой требует запоминания и понимания формул и теорем, а также развитого пространственного мышления. Именно поэтому у школьников и студентов тригонометрические вычисления нередко вызывают трудности. Чтобы побороть их, следует подробнее познакомиться с тригонометрическими функциями и формулами.

Понятия в тригонометрии

Чтобы разобраться в базовых понятиях тригонометрии, следует сначала определиться с тем, что такое прямоугольный треугольник и угол в окружности, и почему именно с ними связаны все основные тригонометрические вычисления. Треугольник, в котором один из углов имеет величину 90 градусов, является прямоугольным. Исторически эта фигура часто использовалась людьми в архитектуре, навигации, искусстве, астрономии. Соответственно, изучая и анализируя свойства этой фигуры, люди пришли к вычислению соответствующих соотношений её параметров.

Основные категории, связанные с прямоугольными треугольниками — гипотенуза и катеты. Гипотенуза — сторона треугольника, лежащая против прямого угла. Катеты, соответственно, это остальные две стороны. Сумма углов любых треугольников всегда равна 180 градусам.

Сферическая тригонометрия — раздел тригонометрии, который не изучается в школе, однако в прикладных науках типа астрономии и геодезии, учёные пользуются именно им. Особенность треугольника в сферической тригонометрии в том, что он всегда имеет сумму углов более 180 градусов.

Углы треугольника

В прямоугольном треугольнике синусом угла является отношение катета, противолежащего искомому углу, к гипотенузе треугольника. Соответственно, косинус — это отношение прилежащего катета и гипотенузы. Оба эти значения всегда имеют величину меньше единицы, так как гипотенуза всегда длиннее катета.

Тангенс угла — величина, равная отношению противолежащего катета к прилежащему катету искомого угла, или же синуса к косинусу. Котангенс, в свою очередь, это отношение прилежащего катета искомого угла к противолежащему кактету. Котангенс угла можно также получить, разделив единицу на значение тангенса.

Единичная окружность

Единичная окружность в геометрии — окружность, радиус которой равен единице. Такая окружность строится в декартовой системе координат, при этом центр окружности совпадает с точкой начала координат, а начальное положение вектора радиуса определено по положительному направлению оси Х (оси абсцисс). Каждая точка окружности имеет две координаты: ХХ и YY, то есть координаты абсцисс и ординат. Выбрав на окружности любую точку в плоскости ХХ, и опустив с неё перпендикуляр на ось абсцисс, получаем прямоугольный треугольник, образованный радиусом до выбранной точки (обозначим её буквой С), перпендикуляром, проведённым до оси Х (точка пересечения обозначается буквой G), а отрезком оси абсцисс между началом координат (точка обозначена буквой А) и точкой пересечения G. Полученный треугольник АСG — прямоугольный треугольник, вписанный в окружность, где AG — гипотенуза, а АС и GC — катеты. Угол между радиусом окружности АС и отрезком оси абсцисс с обозначением AG, определим как α (альфа). Так, cos α = AG/AC. Учитывая, что АС — это радиус единичной окружности, и он равен единице, получится, что cos α=AG. Аналогично, sin α=CG.

Кроме того, зная эти данные, можно определить координату точки С на окружности, так как cos α=AG, а sin α=CG, значит, точка С имеет заданные координаты (cos α;sin α). Зная, что тангенс равен отношению синуса к косинусу, можно определить, что tg α = y/х, а ctg α = х/y. Рассматривая углы в отрицательной системе координат, можно рассчитать, что значения синуса и косинуса некоторых углов могут быть отрицательными.

Вычисления и основные формулы


Значения тригонометрических функций

Рассмотрев сущность тригонометрических функций через единичную окружность, можно вывести значения этих функций для некоторых углов. Значения перечислены в таблице ниже.

Простейшие тригонометрические тождества

Уравнения, в которых под знаком тригонометрической функции присутствует неизвестное значение, называются тригонометрическими. Тождества со значением sin х = α, k — любое целое число:

  1. sin х = 0, х = πk.
  2. 2. sin х = 1, х = π/2 + 2πk.
  3. sin х = -1, х = -π/2 + 2πk.
  4. sin х = а, |a| > 1, нет решений.
  5. sin х = а, |a| ≦ 1, х = (-1)^k * arcsin α + πk.

Тождества со значением cos х = а, где k — любое целое число:

  1. cos х = 0, х = π/2 + πk.
  2. cos х = 1, х = 2πk.
  3. cos х = -1, х = π + 2πk.
  4. cos х = а, |a| > 1, нет решений.
  5. cos х = а, |a| ≦ 1, х = ±arccos α + 2πk.

Тождества со значением tg х = а, где k — любое целое число:

  1. tg х = 0, х = π/2 + πk.
  2. tg х = а, х = arctg α + πk.

Тождества со значением ctg х = а, где k — любое целое число:

  1. ctg х = 0, х = π/2 + πk.
  2. ctg х = а, х = arcctg α + πk.

Формулы приведения

Эта категория постоянных формул обозначает методы, с помощью которых можно перейти от тригонометрических функций вида к функциям аргумента, то есть привести синус, косинус, тангенс и котангенс угла любого значения к соответствующим показателям угла интервала от 0 до 90 градусов для большего удобства вычислений.

Формулы приведения функций для синуса угла выглядят таким образом:

  • sin(900 — α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 — α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 — α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 — α) = -sin α;
  • sin(3600 + α) = sin α.

Для косинуса угла:

  • cos(900 — α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 — α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 — α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 — α) = cos α;
  • cos(3600 + α) = cos α.

Использование вышеуказанных формул возможно при соблюдении двух правил. Во-первых, если угол можно представить как значение (π/2 ± a) или (3π/2 ± a), значение функции меняется:

  • с sin на cos;
  • с cos на sin;
  • с tg на ctg;
  • с ctg на tg.

Значение функции остаётся неизменным, если угол может быть представлен как (π ± a) или (2π ± a).

Во-вторых, знак приведенной функции не изменяется: если он изначально был положительным, таким и остаётся. Аналогично с отрицательными функциями.

Формулы сложения

Эти формулы выражают величины синуса, косинуса, тангенса и котангенса суммы и разности двух углов поворота через их тригонометрические функции. Обычно углы обозначаются как α и β.

Формулы имеют такой вид:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tg(α ± β) = (tg α ± tg β) / (1 ∓ tg α * tg β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

Эти формулы справедливы для любых величин углов α и β.

Формулы двойного и тройного угла

Тригонометрические формулы двойного и тройного угла — это формулы, которые связывают функции углов 2α и 3α соответственно, с тригонометрическими функциями угла α. Выводятся из формул сложения:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 — 2sin^2 α.
  3. tg2α = 2tgα / (1 — tg^2 α).
  4. sin3α = 3sinα — 4sin^3 α.
  5. cos3α = 4cos^3 α — 3cosα.
  6. tg3α = (3tgα — tg^3 α) / (1-tg^2 α).

Переход от суммы к произведению

Учитывая, что 2sinx*cosy = sin(x+y) + sin(x-y), упростив эту формулу, получаем тождество sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Аналогично sinα — sinβ = 2sin(α — β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα — tgβ = sin(α — β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Переход от произведения к сумме

Эти формулы следуют из тождеств перехода суммы в произведение:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Формулы понижения степени

В этих тождествах квадратную и кубическую степени синуса и косинуса можно выразить через синус и косинус первой степени кратного угла:

  • sin^2 α = (1 — cos2α)/2;
  • cos^2 α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα — sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 — 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Универсальная подстановка

Формулы универсальной тригонометрической подстановки выражают тригонометрические функции через тангенс половинного угла.

  • sin x = (2tgx/2) * (1 + tg^2 x/2), при этом х = π + 2πn;
  • cos x = (1 — tg^2 x/2) / (1 + tg^2 x/2), где х = π + 2πn;
  • tg x = (2tgx/2) / (1 — tg^2 x/2), где х = π + 2πn;
  • ctg x = (1 — tg^2 x/2) / (2tgx/2), при этом х = π + 2πn.

Частные случаи

Частные случаи простейших тригонометрических уравнений приведены ниже (k — любое целое число).

Частные для синуса:

Значение sin x Значение x
0 πk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk или 5π/6 + 2πk
-1/2 -π/6 + 2πk или -5π/6 + 2πk
√2/2 π/4 + 2πk или 3π/4 + 2πk
-√2/2 -π/4 + 2πk или -3π/4 + 2πk
√3/2 π/3 + 2πk или 2π/3 + 2πk
-√3/2 -π/3 + 2πk или -2π/3 + 2πk

Частные для косинуса:

Значение cos x Значение х
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Частные для тангенса:

Значение tg x Значение х
0 πk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Частные для котангенса:

Значение ctg x Значение x
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Теоремы

Теорема синусов

Существует два варианта теоремы — простой и расширенный. Простая теорема синусов: a/sin α = b/sin β = c/sin γ. При этом, a, b, c — стороны треугольника, и α, β, γ — соответственно, противолежащие углы.

Расширенная теорема синусов для произвольного треугольника: a/sin α = b/sin β = c/sin γ = 2R. В этом тождестве R обозначает радиус круга, в который вписан заданный треугольник.

Теорема косинусов

Тождество отображается таким образом: a^2 = b^2 + c^2 — 2*b*c*cos α. В формуле a, b, c — стороны треугольника, и α — угол, противолежащий стороне а.

Теорема тангенсов

Формула выражает связь между тангенсами двух углов, и длиной сторон, им противолежащих. Стороны обозначены как a, b, c, а соответствующие противолежащие углы — α, β, γ. Формула теоремы тангенсов: (a — b) / (a+b) = tg((α — β)/2) / tg((α + β)/2).

Теорема котангенсов

Связывает радиус вписанной в треугольник окружности с длиной его сторон. Если a, b, c — стороны треугольника, и А, В, С, соответственно, противолежащие им углы, r — радиус вписанной окружности, и p — полупериметр треугольника, справедливы такие тождества:

  • ctg A/2 = (p-a)/r;
  • ctg B/2 = (p-b)/r;
  • ctg C/2 = (p-c)/r.

Прикладное применение

Тригонометрия — не только теоретическая наука, связанная с математическими формулами. Её свойствами, теоремами и правилами пользуются на практике разные отрасли человеческой деятельности — астрономия, воздушная и морская навигация, теория музыки, геодезия, химия, акустика, оптика, электроника, архитектура, экономика, машиностроение, измерительные работы, компьютерная графика, картография, океанография, и многие другие.

Синус, косинус, тангенс и котангенс — основные понятия тригонометрии, с помощью которых математически можно выразить соотношения между углами и длинами сторон в треугольнике, и найти искомые величины через тождества, теоремы и правила.

ЕГЭ на 4? А не лопнешь от счастья?

Вопрос, как говорится, интересный... Можно, можно сдать на 4! И при этом не лопнуть... Главное условие - заниматься регулярно. Здесь - основная подготовка к ЕГЭ по математике. Со всеми секретами и тайнами ЕГЭ, о которых Вы не прочитаете в учебниках... Изучайте этот раздел, решайте больше заданий из различных источников - и всё получится! Предполагается, что базовый раздел "С тебя и тройки хватит!" у вас затруднений не вызывает. Но если вдруг... По ссылочкам-то ходите, не ленитесь!

И начнём мы с великой и ужасной темы.

Тригонометрия

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Эта тема доставляет массу проблем ученикам. Считается одной из самых суровых. Что такое синус и косинус? Что такое тангенс и котангенс? Что такое числовая окружность? Стоит задать эти безобидные вопросы, как человек бледнеет и пытается увести разговор в сторону… А зря. Это простые понятия. И ничем эта тема не сложнее других. Просто нужно с самого начала чётко уяснить ответы на эти самые вопросы. Это очень важно. Если уяснили – тригонометрия вам понравится. Итак,

Что такое синус и косинус? Что такое тангенс и котангенс?

Начнём с глубокой древности. Не волнуйтесь, все 20 веков тригонометрии мы пройдём минут за 15. И, незаметно для себя, повторим кусочек геометрии из 8 класса.

Нарисуем прямоугольный треугольник со сторонами а, в, с и углом х . Вот такой.

Напомню, что стороны, которые образуют прямой угол, называются катетами. а и в – катеты. Их два. Оставшаяся сторона называется гипотенузой. с – гипотенуза.

Треугольник и треугольник, подумаешь! Что с ним делать? А вот древние люди знали, что делать! Повторим их действия. Измерим сторону в . На рисунке специально клеточки нарисованы, как в заданиях ЕГЭ бывает. Сторона в равна четырём клеточкам. Ладно. Измерим сторону а. Три клеточки.

А теперь поделим длину стороны а на длину стороны в . Или, как ещё говорят, возьмём отношение а к в . а/в = 3/4.

Можно наоборот, поделить в на а. Получим 4/3. Можно в поделить на с. Гипотенузу с по клеточкам не посчитать, но она равна 5. Получим в/с = 4/5. Короче, можно делить длины сторон друг на друга и получать какие-то числа.

Ну и что? Какой смысл в этом интересном занятии? Пока никакого. Бестолковое занятие, прямо скажем.)

А теперь сделаем вот что. Увеличим треугольник. Продлим стороны в и с , но так, чтобы треугольник остался прямоугольным. Угол х , естественно, не меняется. Чтобы это увидеть, наведите курсор мышки на картинку, или коснитесь её (если у вас - планшет). Стороны а, в и с превратятся в m, n, k , и, понятное дело, длины сторон изменятся.

А вот их отношения – нет!

Отношение а/в было: а/в = 3/4, стало m/n = 6/8 = 3/4. Отношения других соответствующих сторон также не изменятся . Можно как угодно менять длины сторон в прямоугольном треугольнике, увеличивать, уменьшать, не меняя угла х отношения соответствующих сторон не изменятся . Можно проверить, а можно поверить древним людям на слово.

А вот это уже очень важно! Отношения сторон в прямоугольном треугольнике никак не зависят от длин сторон (при одном и том же угле). Это настолько важно, что отношения сторон заслужили свои специальные названия. Свои имена, так сказать.) Знакомьтесь.

Что такое синус угла х ? Это отношение противолежащего катета к гипотенузе:

sinx = а/с

Что такое косинус угла х ? Это отношение прилежащего катета к гипотенузе:

с osx = в/с

Что такое тангенс угла х ? Это отношение противолежащего катета к прилежащему:

tgx = а/в

Что такое котангенс угла х ? Это отношение прилежащего катета к противолежащему:

ctgx = в/а

Всё очень просто. Синус, косинус, тангенс и котангенс – это некоторые числа. Безразмерные. Просто числа. Для каждого угла – свои.

Зачем я так занудно всё повторяю? Затем, что это надо запомнить . Железно запомнить. Запоминание можно облегчить. Фраза «Начнём издалека…» знакома? Вот и начинайте издалека.

Синус угла – это отношение дальнего от угла катета к гипотенузе. Косинус – отношение ближнего к гипотенузе.

Тангенс угла – это отношение дальнего от угла катета к ближнему. Котангенс – наоборот.

Уже проще, правда?

Ну а если запомнить, что в тангенсе и котангенсе сидят только катеты, а в синусе и косинусе гипотенуза появляется, то всё станет совсем просто.

Всю эту славную семейку – синус, косинус, тангенс и котангенс называют ещё тригонометрическими функциями .


А теперь вопрос на соображение.

Почему мы говорим синус, косинус, тангенс и котангенс угла? Речь-то идёт об отношениях сторон, вроде... При чём здесь угол?

Смотрим на вторую картинку. Точно такую же, как и первая.

Наведите мышку на картинку. Я изменил угол х . Увеличил его с х до Х. Все отношения поменялись! Отношение а/в было 3/4, а соответствующее отношение t/в стало 6/4.

И все остальные отношения стали другими!

Стало быть, отношения сторон никак не зависят от их длин (при одном угле х), но резко зависят от этого самого угла! И только от него. Поэтому термины синус, косинус, тангенс и котангенс относятся к углу. Угол здесь - главный.

Надо железно уяснить, что угол неразрывно связан со своими тригонометрическими функциями. У каждого угла есть свой синус и косинус. И почти у каждого - свой тангенс и котангенс. Это важно. Считается, что если нам дан угол, то его синус, косинус, тангенс и котангенс нам известны ! И наоборот. Дан синус, или любая другая тригонометрическая функция – значит, мы знаем угол.

Существуют специальные таблицы, где для каждого угла расписаны его тригонометрические функции. Таблицы Брадиса называются. Они очень давно составлены. Когда ещё не было ни калькуляторов, ни компьютеров...

Конечно, тригонометрические функции всех углов запомнить нельзя. Вы обязаны знать их только для нескольких углов, об этом дальше будет. Но заклинание «знаю угол – значит, знаю его тригонометрические функции» - работает всегда!

Вот мы и повторили кусочек геометрии из 8-го класса. Оно нам надо для ЕГЭ? Надо. Вот вам типичная задачка из ЕГЭ. Для решения которой достаточно 8-го класса. Дана картинка:

Всё. Больше никаких данных нет. Надо найти длину катета ВС.

Клеточки слабо помогают, треугольник как-то неправильно расположен.... Специально, поди… Из информации есть длина гипотенузы. 8 клеток. Ещё зачем-то дан угол.

Вот здесь надо сразу вспоминать про тригонометрию. Есть угол, значит, мы знаем все его тригонометрические функции. Какую функцию из четырёх в дело пустить? А посмотрим-ка, что нам известно? Нам известны гипотенуза, угол, а найти надо прилежащий к этому углу катет! Ясно дело, косинус нужно в дело запускать! Вот и запускаем. Просто пишем, по определению косинуса (отношение прилежащего катета к гипотенузе):

cosC = ВС/8

Угол С у нас 60 градусов, его косинус равен 1/2. Это знать надо, безо всяких таблиц! Стало быть:

1/2 = ВС/8

Элементарное линейное уравнение. Неизвестное – ВС . Кто подзабыл, как решать уравнения , прогуляйтесь по ссылке, остальные решают:

ВС = 4

Когда древние люди поняли, что у каждого угла имеется свой комплект тригонометрических функций, у них возник резонный вопрос. А не связаны ли как-нибудь синус, косинус, тангенс и котангенс между собой? Так, чтобы зная одну функцию угла, можно было найти остальные? Не вычисляя сам угол?

Вот такие они были неугомонные...)

Связь между тригонометрическими функциями одного угла.

Конечно, синус, косинус, тангенс и котангенс одного и того же угла связаны между собой. Всякая связь между выражениями задаётся в математике формулами. В тригонометрии формул - колоссальное количество. Но здесь мы рассмотрим самые основные. Эти формулы так и называются: основные тригонометрические тождества. Вот они:

Эти формулы надо знать железно. Без них вообще в тригонометрии делать нечего. Из этих основных тождеств вытекают ещё три вспомогательных тождества:

Сразу предупреждаю, что три последние формулы быстро выпадают из памяти. Почему-то.) Можно, конечно, вывести эти формулы из первых трёх. Но, в трудную минуту... Сами понимаете.)

В стандартных заданиях, типа тех, что приведены ниже, есть способ обойтись без этих незапоминающихся формул. И резко уменьшить ошибки по забывчивости, да и в вычислениях тоже. Этот практический приём - в Разделе 555, урок "Связь между тригонометрическими функциями одного угла."

В каких заданиях и как используются основные тригонометрические тождества? Самое популярное задание - найти какую-нибудь функцию угла, если дана другая. В ЕГЭ такое задание из года в год присутствует.) Например:

Найти значение sinx, если х - острый угол, а cosx=0,8.

Задачка почти элементарная. Ищем формулу, где имеются синус и косинус. Вот она эта формула:

sin 2 x + cos 2 x = 1

Подставляем сюда известную величину, а именно, 0,8 вместо косинуса:

sin 2 x + 0,8 2 = 1

Ну и считаем, как обычно:

sin 2 x + 0,64 = 1

sin 2 x = 1 - 0,64

Вот, практически и всё. Мы вычислили квадрат синуса, осталось извлечь квадратный корень и ответ готов! Корень из 0,36 будет 0,6.

Задачка почти элементарная. Но словечко "почти" здесь не зря стоит... Дело в том, что ответ sinx= - 0,6 тоже подходит... (-0,6) 2 тоже 0,36 будет.

Два разных ответа получаются. А нужен один. Второй - неправильный. Как быть!? Да как обычно.) Внимательно прочитать задание. Там зачем-то написано: ...если х - острый угол... А в заданиях каждое слово смысл имеет, да... Эта фраза - и есть дополнительная информация к решению.

Острый угол - это угол меньше 90°. А у таких углов все тригонометрические функции - и синус, и косинус, и тангенс с котангенсом - положительные. Т.е. отрицательный ответ мы здесь просто отбрасываем. Имеем право.

Собственно, восьмиклассникам такие тонкости не нужны. Они работают только с прямоугольными треугольниками, где углы могут быть только острые. И не знают, счастливые, что бывают и отрицательные углы, и углы в 1000°... И у всех этих кошмарных углов есть свои тригонометрические функции и с плюсом, и с минусом...

А вот старшеклассникам без учёта знака - никак. Многие знания умножают печали, да...) И для правильного решения в задании обязательно присутствует дополнительная информация (если она необходима). Например, она может быть дана такой записью:

Или как-нибудь иначе. В примерах ниже увидите.) Для решения таких примеров нужно знать, в какую четверть попадает заданный угол х и какой знак имеет нужная тригонометрическая функция в этой четверти.

Эти азы тригонометрии рассмотрены в уроках что такое тригонометрический круг, отсчёт углов на этом круге, радианная мера угла. Иногда требуется знать и таблицу синусов косинусов тангенсов и котангенсов.

Итак, отметим самое главное:

Практические советы:

1. Запомните определения синуса, косинуса, тангенса и котангенса. Очень пригодится.

2. Чётко усваиваем: синус, косинус, тангенс и котангенс накрепко связаны с углами. Знаем одно - значит, знаем и другое.

3. Чётко усваиваем: синус, косинус, тангенс и котангенс одного угла связаны между собой основными тригонометрическими тождествами. Знаем одну функцию - значит, можем (при наличии необходимой дополнительной информации) вычислить все остальные.

А теперь порешаем, как водится. Сначала задания в объёме 8-го класса. Но и старшеклассникам тоже можно...)

1. Вычислить значение tgА, если ctgА = 0,4.

2. β - угол в прямоугольном треугольнике. Найти значение tgβ, если sinβ = 12/13.

3. Определить синус острого угла х, если tgх = 4/3.

4. Найти значение выражения:

6sin 2 5° - 3 + 6cos 2 5°

5. Найти значение выражения:

(1-cosx)(1+cosx), если sinх = 0,3

Ответы (через точку с запятой, в беспорядке):

0,09; 3; 0,8; 2,4; 2,5

Получилось? Отлично! Восьмиклассники могут уже пройти за своими пятёрками.)

Не всё получилось? Задания 2 и 3 как-то не очень...? Не беда! Есть один красивый приём для подобных заданий. Всё решается, практически, вообще без формул! Ну и, следовательно, без ошибок. Этот приём в уроке: "Связь между тригонометрическими функциями одного угла" в Разделе 555 описан. Там же разобраны и все остальные задания.

Это были задачки типа ЕГЭ, но в урезанном варианте. ЕГЭ - лайт). А сейчас почти такие же задания, но в полноценном егэшном виде. Для обременённых знаниями старшеклассников.)

6. Найти значение tgβ, если sinβ = 12/13, а

7. Определить sinх, если tgх = 4/3, а х принадлежит интервалу (- 540°; - 450°).

8. Найти значение выражения sinβ·cosβ, если ctgβ = 1.

Ответы (в беспорядке):

0,8; 0,5; -2,4.

Здесь в задаче 6 угол задан как-то не очень однозначно... А в задаче 8 и вовсе не задан! Это специально). Дополнительная информация не только из задания берётся, но и из головы.) Зато уж если решили - одно верное задание гарантировано!

А если не решили? Гм... Ну, тут Раздел 555 поможет. Там решения всех этих заданий подробно расписаны, трудно не разобраться.

В этом уроке дано очень ограниченное понятие тригонометрических функций. В пределах 8-го класса. А у старших остаются вопросы...

Например, если угол х (смотрите вторую картинку на этой странице) - сделать тупым!? Треугольник-то вообще развалится! И как быть? Ни катета не будет, ни гипотенузы... Пропал синус...

Если бы древние люди не нашли выход из этого положения, не было бы у нас сейчас ни мобильников, ни TV, ни электричества. Да-да! Теоретическая основа всех этих вещей без тригонометрических функций - ноль без палочки. Но древние люди не подвели. Как они выкрутились - в следующем уроке.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Вспомним школьный курс математики и поговорим о том, что такое тангенс и как найти тангенс угла. Сначала определим, что называется тангенсом. В прямоугольном треугольнике тангенсом острого угла является отношение противолежащего катета к прилежащему. Прилежащим катетом является тот, который участвует в образовании угла, противолежащим — тот, который расположен напротив угла.

Также тангенсом острого угла является отношение синуса этого угла к его косинусу. Для понимания напомним, что является синусом и косинусом угла. Синусом острого угла в прямоугольном треугольнике является отношение противолежащего катета к гипотенузе, косинус — это отношение прилежащего катета к гипотенузе.

Есть еще котангенс, он противоположен тангенсу. Котангенсом является отношение прилежащего катета к противолежащему и соответственно отношение косинуса угла к его синусу.

Синус, косинус, тангенс и котангенс являются тригонометрическими функциями угла, они показывают соотношения между углами и сторонами треугольника, помогают вычислять стороны треугольника.

Вычисляем тангенс острого угла

Как найти тангенс в треугольнике? Чтобы не тратить время на поиски тангенса, можно найти специальные таблицы, где указаны тригонометрические функции многих углов. В школьных задачках по геометрии очень распространены определенные углы, и значения их синусов, косинусов, тангенсов и котангенсов учителя просят запомнить. Мы предлагаем вам небольшую табличку с нужными значениями эти углов.

Если же угол, тангенс которого нужно найти, не представлен в этой таблице, то можно воспользоваться двумя формулами, которые мы и представили выше в словесной форме.

Первый способ вычислить тангенс угла — это поделить длину противолежащего катета на длину прилежащего. Допустим, противолежащий катет равен 4, а прилежащий 8. Чтобы найти тангенс, надо 4:8. Тангенс угла будет равен ½ или 0,5.

Второй способ вычисления тангенса — это поделить значение синуса данного угла на значение его косинуса. Например, нам дан угол в 45 градусов. Его sin = корень из двух, поделенный на два; его cos равен тому же числу. Теперь делим синус на косинус и получаем тангенс, равный единице.

Бывает, что нужно воспользоваться именно этой формулой, но известен только один элемент — или синус, или косинус. В таком случае будет полезно вспомнить формулу

sin2 α + cos2 α = 1. Это основное тригонометрическое тождество. Выражая неизвестный элемент через известный, можно выяснить его значение. А зная синус и косинус, найти тангенс уже нетрудно.

А если геометрия — это явно не ваше призвание, но сделать домашнее задание все же нужно, то можно воспользоваться онлайн-калькулятором расчета тангенса угла .

Мы рассказали вам на простых примерах, как находить тангенс. Однако условия задач бывают труднее и не всегда можно быстро выяснить все необходимые данные. В этом случае вам поможет теорема Пифагора и различные тригонометрические функции.

Лекция: Синус, косинус, тангенс, котангенс произвольного угла

Синус, косинус произвольного угла


Чтобы понять, что такое тригонометрические функции, обратимся к окружности с единичным радиусом. Данная окружность имеет центр в начале координат на координатной плоскости. Для определения заданных функций будем использовать радиус-вектор ОР , который начинается в центре окружности, а точка Р является точкой окружности. Данный радиус-вектор образует угол альфа с осью ОХ . Так как окружность имеет радиус, равный единице, то ОР = R = 1 .

Если с точки Р опустить перпендикуляр на ось ОХ , то получим прямоугольный треугольник с гипотенузой, равной единице.


Если радиус-вектор двигается по часовой стрелке, то данное направление называется отрицательным , если же он двигается против движения часовой стрелки - положительным .


Синусом угла ОР , является ордината точки Р вектора на окружности.

То есть, для получения значения синуса данного угла альфа необходимо определиться с координатой У на плоскости.

Как данное значение было получено? Так как мы знаем, что синус произвольного угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе, получим, что

А так как R = 1 , то sin(α) = y 0 .


В единичной окружности значение ординаты не может быть меньше -1 и больше 1, значит,

Синус принимает положительное значение в первой и второй четверти единичной окружности, а в третьей и четвертой - отрицательное.

Косинусом угла данной окружности, образованного радиусом-вектором ОР , является абсцисса точки Р вектора на окружности.

То есть, для получения значения косинуса данного угла альфа необходимо определиться с координатой Х на плоскости.


Косинус произвольного угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе, получим, что


А так как R = 1 , то cos(α) = x 0 .

В единичной окружности значение абсциссы не может быть меньше -1 и больше 1, значит,

Косинус принимает положительное значение в первой и четвертой четверти единичной окружности, а во второй и в третьей - отрицательное.

Тангенсом произвольного угла считается отношение синуса к косинусу.

Если рассматривать прямоугольный треугольник, то это отношение противолежащего катета к прилежащему. Если же речь идет о единичной окружности, то это отношение ординаты к абсциссе.

Судя по данным отношениям, можно понять, что тангенс не может существовать, если значение абсциссы равно нулю, то есть при угле в 90 градусов. Все остальные значения тангенс принимать может.

Тангенс имеет положительное значение в первой и третьей четверти единичной окружности, а во второй и четвертой является отрицательным.

В таблице значения тангенсов от 0° до 360°.

Таблица тангенсов нужна, когда у вас под рукой нет калькулятора. Чтобы узнать, чему равен тангенс угла, просто найдите его в таблице. Для начала короткая версия таблицы:

https://uchim.org/matematika/tablica-tangensov — uchim.org

Таблица тангенсов для 0°-180°

tg(1°) 0.0175
tg(2°) 0.0349
tg(3°) 0.0524
tg(4°) 0.0699
tg(5°) 0.0875
tg(6°) 0.1051
tg(7°) 0.1228
tg(8°) 0.1405
tg(9°) 0.1584
tg(10°) 0.1763
tg(11°) 0.1944
tg(12°) 0.2126
tg(13°) 0.2309
tg(14°) 0.2493
tg(15°) 0.2679
tg(16°) 0.2867
tg(17°) 0.3057
tg(18°) 0.3249
tg(19°) 0.3443
tg(20°) 0.364
tg(21°) 0.3839
tg(22°) 0.404
tg(23°) 0.4245
tg(24°) 0.4452
tg(25°) 0.4663
tg(26°) 0.4877
tg(27°) 0.5095
tg(28°) 0.5317
tg(29°) 0.5543
tg(30°) 0.5774
tg(31°) 0.6009
tg(32°) 0.6249
tg(33°) 0.6494
tg(34°) 0.6745
tg(35°) 0.7002
tg(36°) 0.7265
tg(37°) 0.7536
tg(38°) 0.7813
tg(39°) 0.8098
tg(40°) 0.8391
tg(41°) 0.8693
tg(42°) 0.9004
tg(43°) 0.9325
tg(44°) 0.9657
tg(45°) 1
tg(46°) 1.0355
tg(47°) 1.0724
tg(48°) 1.1106
tg(49°) 1.1504
tg(50°) 1.1918
tg(51°) 1.2349
tg(52°) 1.2799
tg(53°) 1.327
tg(54°) 1.3764
tg(55°) 1.4281
tg(56°) 1.4826
tg(57°) 1.5399
tg(58°) 1.6003
tg(59°) 1.6643
tg(60°) 1.7321
tg(61°) 1.804
tg(62°) 1.8807
tg(63°) 1.9626
tg(64°) 2.0503
tg(65°) 2.1445
tg(66°) 2.246
tg(67°) 2.3559
tg(68°) 2.4751
tg(69°) 2.6051
tg(70°) 2.7475
tg(71°) 2.9042
tg(72°) 3.0777
tg(73°) 3.2709
tg(74°) 3.4874
tg(75°) 3.7321
tg(76°) 4.0108
tg(77°) 4.3315
tg(78°) 4.7046
tg(79°) 5.1446
tg(80°) 5.6713
tg(81°) 6.3138
tg(82°) 7.1154
tg(83°) 8.1443
tg(84°) 9.5144
tg(85°) 11.4301
tg(86°) 14.3007
tg(87°) 19.0811
tg(88°) 28.6363
tg(89°) 57.29
tg(90°)
tg(91°) -57.29
tg(92°) -28.6363
tg(93°) -19.0811
tg(94°) -14.3007
tg(95°) -11.4301
tg(96°) -9.5144
tg(97°) -8.1443
tg(98°) -7.1154
tg(99°) -6.3138
tg(100°) -5.6713
tg(101°) -5.1446
tg(102°) -4.7046
tg(103°) -4.3315
tg(104°) -4.0108
tg(105°) -3.7321
tg(106°) -3.4874
tg(107°) -3.2709
tg(108°) -3.0777
tg(109°) -2.9042
tg(110°) -2.7475
tg(111°) -2.6051
tg(112°) -2.4751
tg(113°) -2.3559
tg(114°) -2.246
tg(115°) -2.1445
tg(116°) -2.0503
tg(117°) -1.9626
tg(118°) -1.8807
tg(119°) -1.804
tg(120°) -1.7321
tg(121°) -1.6643
tg(122°) -1.6003
tg(123°) -1.5399
tg(124°) -1.4826
tg(125°) -1.4281
tg(126°) -1.3764
tg(127°) -1.327
tg(128°) -1.2799
tg(129°) -1.2349
tg(130°) -1.1918
tg(131°) -1.1504
tg(132°) -1.1106
tg(133°) -1.0724
tg(134°) -1.0355
tg(135°) -1
tg(136°) -0.9657
tg(137°) -0.9325
tg(138°) -0.9004
tg(139°) -0.8693
tg(140°) -0.8391
tg(141°) -0.8098
tg(142°) -0.7813
tg(143°) -0.7536
tg(144°) -0.7265
tg(145°) -0.7002
tg(146°) -0.6745
tg(147°) -0.6494
tg(148°) -0.6249
tg(149°) -0.6009
tg(150°) -0.5774
tg(151°) -0.5543
tg(152°) -0.5317
tg(153°) -0.5095
tg(154°) -0.4877
tg(155°) -0.4663
tg(156°) -0.4452
tg(157°) -0.4245
tg(158°) -0.404
tg(159°) -0.3839
tg(160°) -0.364
tg(161°) -0.3443
tg(162°) -0.3249
tg(163°) -0.3057
tg(164°) -0.2867
tg(165°) -0.2679
tg(166°) -0.2493
tg(167°) -0.2309
tg(168°) -0.2126
tg(169°) -0.1944
tg(170°) -0.1763
tg(171°) -0.1584
tg(172°) -0.1405
tg(173°) -0.1228
tg(174°) -0.1051
tg(175°) -0.0875
tg(176°) -0.0699
tg(177°) -0.0524
tg(178°) -0.0349
tg(179°) -0.0175
tg(180°) -0

Таблица тангенсов для 180° — 360°

tg(181°) 0.0175
tg(182°) 0.0349
tg(183°) 0.0524
tg(184°) 0.0699
tg(185°) 0.0875
tg(186°) 0.1051
tg(187°) 0.1228
tg(188°) 0.1405
tg(189°) 0.1584
tg(190°) 0.1763
tg(191°) 0.1944
tg(192°) 0.2126
tg(193°) 0.2309
tg(194°) 0.2493
tg(195°) 0.2679
tg(196°) 0.2867
tg(197°) 0.3057
tg(198°) 0.3249
tg(199°) 0.3443
tg(200°) 0.364
tg(201°) 0.3839
tg(202°) 0.404
tg(203°) 0.4245
tg(204°) 0.4452
tg(205°) 0.4663
tg(206°) 0.4877
tg(207°) 0.5095
tg(208°) 0.5317
tg(209°) 0.5543
tg(210°) 0.5774
tg(211°) 0.6009
tg(212°) 0.6249
tg(213°) 0.6494
tg(214°) 0.6745
tg(215°) 0.7002
tg(216°) 0.7265
tg(217°) 0.7536
tg(218°) 0.7813
tg(219°) 0.8098
tg(220°) 0.8391
tg(221°) 0.8693
tg(222°) 0.9004
tg(223°) 0.9325
tg(224°) 0.9657
tg(225°) 1
tg(226°) 1.0355
tg(227°) 1.0724
tg(228°) 1.1106
tg(229°) 1.1504
tg(230°) 1.1918
tg(231°) 1.2349
tg(232°) 1.2799
tg(233°) 1.327
tg(234°) 1.3764
tg(235°) 1.4281
tg(236°) 1.4826
tg(237°) 1.5399
tg(238°) 1.6003
tg(239°) 1.6643
tg(240°) 1.7321
tg(241°) 1.804
tg(242°) 1.8807
tg(243°) 1.9626
tg(244°) 2.0503
tg(245°) 2.1445
tg(246°) 2.246
tg(247°) 2.3559
tg(248°) 2.4751
tg(249°) 2.6051
tg(250°) 2.7475
tg(251°) 2.9042
tg(252°) 3.0777
tg(253°) 3.2709
tg(254°) 3.4874
tg(255°) 3.7321
tg(256°) 4.0108
tg(257°) 4.3315
tg(258°) 4.7046
tg(259°) 5.1446
tg(260°) 5.6713
tg(261°) 6.3138
tg(262°) 7.1154
tg(263°) 8.1443
tg(264°) 9.5144
tg(265°) 11.4301
tg(266°) 14.3007
tg(267°) 19.0811
tg(268°) 28.6363
tg(269°) 57.29
tg(270°) — ∞
tg(271°) -57.29
tg(272°) -28.6363
tg(273°) -19.0811
tg(274°) -14.3007
tg(275°) -11.4301
tg(276°) -9.5144
tg(277°) -8.1443
tg(278°) -7.1154
tg(279°) -6.3138
tg(280°) -5.6713
tg(281°) -5.1446
tg(282°) -4.7046
tg(283°) -4.3315
tg(284°) -4.0108
tg(285°) -3.7321
tg(286°) -3.4874
tg(287°) -3.2709
tg(288°) -3.0777
tg(289°) -2.9042
tg(290°) -2.7475
tg(291°) -2.6051
tg(292°) -2.4751
tg(293°) -2.3559
tg(294°) -2.246
tg(295°) -2.1445
tg(296°) -2.0503
tg(297°) -1.9626
tg(298°) -1.8807
tg(299°) -1.804
tg(300°) -1.7321
tg(301°) -1.6643
tg(302°) -1.6003
tg(303°) -1.5399
tg(304°) -1.4826
tg(305°) -1.4281
tg(306°) -1.3764
tg(307°) -1.327
tg(308°) -1.2799
tg(309°) -1.2349
tg(310°) -1.1918
tg(311°) -1.1504
tg(312°) -1.1106
tg(313°) -1.0724
tg(314°) -1.0355
tg(315°) -1
tg(316°) -0.9657
tg(317°) -0.9325
tg(318°) -0.9004
tg(319°) -0.8693
tg(320°) -0.8391
tg(321°) -0.8098
tg(322°) -0.7813
tg(323°) -0.7536
tg(324°) -0.7265
tg(325°) -0.7002
tg(326°) -0.6745
tg(327°) -0.6494
tg(328°) -0.6249
tg(329°) -0.6009
tg(330°) -0.5774
tg(331°) -0.5543
tg(332°) -0.5317
tg(333°) -0.5095
tg(334°) -0.4877
tg(335°) -0.4663
tg(336°) -0.4452
tg(337°) -0.4245
tg(338°) -0.404
tg(339°) -0.3839
tg(340°) -0.364
tg(341°) -0.3443
tg(342°) -0.3249
tg(343°) -0.3057
tg(344°) -0.2867
tg(345°) -0.2679
tg(346°) -0.2493
tg(347°) -0.2309
tg(348°) -0.2126
tg(349°) -0.1944
tg(350°) -0.1763
tg(351°) -0.1584
tg(352°) -0.1405
tg(353°) -0.1228
tg(354°) -0.1051
tg(355°) -0.0875
tg(356°) -0.0699
tg(357°) -0.0524
tg(358°) -0.0349
tg(359°) -0.0175
tg(360°) -0

Существуют также следующие таблицы тригонометрических функций по геометрии: таблица синусов, таблица косинусов и таблица котангенсов.

Всё для учебы » Математика в школе » Таблица тангенсов углов (углы, значения)

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Группа с кучей полезной информации (подпишитесь, если предстоит ЕГЭ или ОГЭ):

Знаки тригонометрических функций

Знак тригонометрической функции зависит исключительно от координатной четверти, в которой располагается числовой аргумент.

В прошлый раз мы учились переводить аргументы из радианной меры в градусную (см. урок «Радианная и градусная мера угла»), а затем определять эту самую координатную четверть. Теперь займемся, собственно, определением знака синуса, косинуса и тангенса.

угла α - это ордината (координата y) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

угла α - это абсцисса (координата x) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

угла α - это отношение синуса к косинусу.

Или, что то же самое, отношение координаты y к координате x .

Обозначение: sin α = y ; cos α = x ; tg α = y: x .

Все эти определения знакомы вам из курса алгебры старших классов. Однако нас интересуют не сами определения, а следствия, которые возникают на тригонометрической окружности. Взгляните:

Синим цветом обозначено положительное направление оси OY (ось ординат), красным - положительное направление оси OX (ось абсцисс).

На этом «радаре» знаки тригонометрических функций становятся очевидными. В частности:

  1. sin α > 0, если угол α лежит в I или II координатной четверти. Это происходит из-за того, что по определению синус - это ордината(координата y).

    А координата y будет положительной именно в I и II координатных четвертях;

  2. cos α > 0, если угол α лежит в I или IV координатной четверти. Потому что только там координата x (она же - абсцисса) будет больше нуля;
  3. tg α > 0, если угол α лежит в I или III координатной четверти. Это следует из определения: ведь tg α = y: x , поэтому он положителен лишь там, где знаки x и y совпадают.

    Это происходит в I координатной четверти (здесь x > 0, y > 0) и III координатной четверти (x < 0, y < 0).

Для наглядности отметим знаки каждой тригонометрической функции - синуса, косинуса и тангенса - на отдельных «радарах». Получим следующую картинку:

Заметьте: в своих рассуждениях я ни разу не говорил о четвертой тригонометрической функции - котангенсе.

Дело в том, что знаки котангенса совпадают со знаками тангенса - никаких специальных правил там нет.

Теперь предлагаю рассмотреть примеры, похожие на задачи B11 из пробного ЕГЭ по математике, который проходил 27 сентября 2011. Ведь лучший способ понять теорию - это практика. Желательно - много практики. Разумеется, условия задач были немного изменены.

Задача. Определите знаки тригонометрических функций и выражений (значения самих функций считать не надо):

  1. sin (3π/4);
  2. cos (7π/6);
  3. tg (5π/3);
  4. sin (3π/4) · cos (5π/6);
  5. cos (2π/3) · tg (π/4);
  6. sin (5π/6) · cos (7π/4);
  7. tg (3π/4) · cos (5π/3);
  8. ctg (4π/3) · tg (π/6).

План действий такой: сначала переводим все углы из радианной меры в градусную (π → 180°), а затем смотрим в какой координатной четверти лежит полученное число.

Зная четверти, мы легко найдем знаки - по только что описанным правилам. Имеем:

  1. sin (3π/4) = sin (3 · 180°/4) = sin 135°. Поскольку 135° ∈ , это угол из II координатной четверти. Но синус во II четверти положителен, поэтому sin (3π/4) > 0;
  2. cos (7π/6) = cos (7 · 180°/6) = cos 210°. Т.к. 210° ∈ , это угол из III координатной четверти, в которой все косинусы отрицательны.

    Следовательно, cos (7π/6) < 0;

  3. tg (5π/3) = tg (5 · 180°/3) = tg 300°. Поскольку 300° ∈ , мы находимся в IV четверти, где тангенс принимает отрицательные значения. Поэтому tg (5π/3) < 0;
  4. sin (3π/4) · cos (5π/6) = sin (3 · 180°/4) · cos (5 · 180°/6) = sin 135° · cos 150°. Разберемся с синусом: т.к. 135° ∈ , это II четверть, в которой синусы положительны, т.е.

    sin (3π/4) > 0. Теперь работаем с косинусом: 150° ∈ - снова II четверть, косинусы там отрицательны. Поэтому cos (5π/6) < 0. Наконец, следуя правилу «плюс на минус дает знак минус», получаем: sin (3π/4) · cos (5π/6) < 0;

  5. cos (2π/3) · tg (π/4) = cos (2 · 180°/3) · tg (180°/4) = cos 120° · tg 45°. Смотрим на косинус: 120° ∈ - это II координатная четверть, поэтому cos (2π/3) < 0. Смотрим на тангенс: 45° ∈ - это I четверть (самый обычный угол в тригонометрии).

    Тангенс там положителен, поэтому tg (π/4) > 0. Опять получили произведение, в котором множители разных знаков. Поскольку «минус на плюс дает минус», имеем: cos (2π/3) · tg (π/4) < 0;

  6. sin (5π/6) · cos (7π/4) = sin (5 · 180°/6) · cos (7 · 180°/4) = sin 150° · cos 315°. Работаем с синусом: поскольку 150° ∈ , речь идет о II координатной четверти, где синусы положительны.

    Следовательно, sin (5π/6) > 0. Аналогично, 315° ∈ - это IV координатная четверть, косинусы там положительны.

    Поэтому cos (7π/4) > 0. Получили произведение двух положительных чисел - такое выражение всегда положительно. Заключаем: sin (5π/6) · cos (7π/4) > 0;

  7. tg (3π/4) · cos (5π/3) = tg (3 · 180°/4) · cos (5 · 180°/3) = tg 135° · cos 300°.

    Но угол 135° ∈ - это II четверть, т.е. tg (3π/4) < 0. Аналогично, угол 300° ∈ - это IV четверть, т.е. cos (5π/3) > 0.

    Поскольку «минус на плюс дает знак минус», имеем: tg (3π/4) · cos (5π/3) < 0;

  8. ctg (4π/3) · tg (π/6) = ctg (4 · 180°/3) · tg (180°/6) = ctg 240° · tg 30°. Смотрим на аргумент котангенса: 240° ∈ - это III координатная четверть, поэтому ctg (4π/3) > 0. Аналогично, для тангенса имеем: 30° ∈ - это I координатная четверть, т.е. самый простой угол. Поэтому tg (π/6) > 0. Снова получили два положительных выражения - их произведение тоже будет положительным.

    Поэтому ctg (4π/3) · tg (π/6) > 0.

В заключение рассмотрим несколько более сложных задач. Помимо выяснения знака тригонометрической функции, здесь придется немного посчитать - именно так, как это делается в настоящих задачах B11. В принципе, это почти настоящие задачи, которые действительно встречается в ЕГЭ по математике.

Найдите sin α, если sin2 α = 0,64 и α ∈ [π/2; π].

Поскольку sin2 α = 0,64, имеем: sin α = ±0,8.

Осталось решить: плюс или минус? По условию, угол α ∈ [π/2; π] - это II координатная четверть, где все синусы положительны. Следовательно, sin α = 0,8 - неопределенность со знаками устранена.

Задача. Найдите cos α, если cos2 α = 0,04 и α ∈ [π; 3π/2].

Действуем аналогично, т.е.

извлекаем квадратный корень: cos2 α = 0,04 ⇒ cos α = ±0,2. По условию, угол α ∈ [π; 3π/2], т.е. речь идет о III координатной четверти. Там все косинусы отрицательны, поэтому cos α = −0,2.

Задача. Найдите sin α, если sin2 α = 0,25 и α ∈ .

Имеем: sin2 α = 0,25 ⇒ sin α = ±0,5.

Тригонометрические функции любого угла

Снова смотрим на угол: α ∈ - это IV координатная четверть, в которой, как известно, синус будет отрицательным. Таким образом, заключаем: sin α = −0,5.

Задача. Найдите tg α, если tg2 α = 9 и α ∈ .

Все то же самое, только для тангенса.

Извлекаем квадратный корень: tg2 α = 9 ⇒ tg α = ±3. Но по условию угол α ∈ - это I координатная четверть. Все тригонометрические функции, в т.ч. тангенс, там положительны, поэтому tg α = 3. Все!


Самое обсуждаемое
Анализ системы управления ВУЗом (на примере Томского государственного университета систем управления и радиоэлектроники) Виды оргстру Анализ системы управления ВУЗом (на примере Томского государственного университета систем управления и радиоэлектроники) Виды оргстру
Что нужно сдать на программиста или все об обучении на программиста Вузы информатики и программирования Что нужно сдать на программиста или все об обучении на программиста Вузы информатики и программирования
Все, что нужно знать для подготовки к сдаче егэ Все, что нужно знать для подготовки к сдаче егэ


top